• Title/Summary/Keyword: Vacuum Seal

Search Result 52, Processing Time 0.028 seconds

Development of a Labyrinth Seal for a Momentum Wheel (모멘텀 휠용 라비린스실 개발)

  • Cheon, Dong-Ik;Oh, Hwa-Suk;Lee, Sangchul;Byun, Sang-Kyun;Park, Jong-Seung;Kang, Min-Young;Rhee, Seung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.37-41
    • /
    • 2007
  • Labyrinth seal is most common way to protect the bearings installed in Reaction wheel. In spite of wide applications, no such research was found about the sealing utility of the Labyrinth seal in the condition of vacuum and high temperature. In this research, we tried to verify the utility of Labyrinth seal. Numerical analysis had been executed to predict the benefit of the Labyrinth seal and also experiments were performed to verify the utilization. Two Bearings were installed at the vacuum chamber, one was assembled with Labyrinth seal and the other was stand alone. After executing the vacuum test, it was found to be the stand alone bearing had lost more weight than the one that was assembled with the labyrinth seal. In this result, it is verified that the Labyrinth seal has useful function to preserve the lubricant that affects to the life-cycle of the Bearing.

  • PDF

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Development of a Magnetic Seal and the Leak Test (마그네틱씰 개발 및 기밀 평가 시험)

  • Kim, Ock-Hyun;Lee, Min-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2011
  • Magnetic seal uses a magnetic fluid to seal a gap between a rotating shaft and housing. It is distinguished from other kinds of seals from the fact that solid contact does not occur in the seal. This implies that it is free from solid rubbing thus dustless and provides a clean circumstance. That is the reason why the magnetic seal is used exclusively for most of vacuum chambers in semiconductor process where dustless clean circumstance is critical. A magnetic seal has been developed of which design parameters are determined based on published data, and an air pressure test has been done to examine its sealing capability. Effects of some design parameters have been studied through FEM analysis. The results show some notable aspects of design parameters and provide suggestions for developing the seals. Regarding the sealing capacity of the magnetic seal the factor to match the theoretical value with the actual one was found to be 0.4~0.7, which means still there is some discrepancy between theory and actual.

Optimal Design of an Exhaust System of a Vacuum-Compatible Air Bearing (진공용 공기베어링 배기시스템의 최적설계)

  • Khim, Gyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.86-95
    • /
    • 2007
  • This paper presents the optimal design of an exhaust system of a vacuum-compatible air bearing using a genetic algorithm. To use the air bearings in vacuum conditions, the differential exhaust method is adopted to minimize the air leakage, which prevents air from leaking into a vacuum chamber by recovering air through several successive seal stages in advance. Therefore, the design of the differential exhaust system is very important because several design parameters such as the number of seals, diameter and length of an exhaust tube, pumping speed and ultimate pressure of a vacuum pump, seal length and gap(bearing clearance) influence on the air leakage, that is, chamber's degree of vacuum. In this paper, we used a genetic algorithm to optimize the design parameters of the exhaust system of a vacuum-compatible air bearing under the several constraint conditions. The results indicate that chamber's degree of vacuum after optimization improved dramatically compared to the initial design, and that the distribution of the spatial design parameters, such as exhaust tube diameter and seal length, was well achieved, and that technical limit of the pumping speed was well determined.

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Contact Stress Analysis of an O-ring Seal in a Dovetail Groove (도브테일 그루브에 장착된 O-링시일의 접촉응력에 관한 연구)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2000
  • The sealing performance of an elastomeric O-ring seal with a temperature gradient has been analyzed for the contact stress behaviors that develop between the O-ring seal and the housing surfaces with which it comes into contact in the dovetail groove. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry (grooved), are investigated using the finite element method. The FE analysis includes material hyperelasticity and axisymmetry The computed FEM results show that the contact stress behaviors are related to a compression rate and a temperature gradient between the vacuum chamber with a dovetail groove and the contacting plate with a cooling jacket.

Bayonet type vacuum insulated pipes with Teflon seal (Teflon seal을 이용한 bayonet형 진공단열배관)

  • 이현철;강형석
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.173-176
    • /
    • 1999
  • Vacuum insulated pipes (VIP) are one of the important equipments for cryogenic fluids' transfer. Flange type of VIP, which can easily be installed at the site, uses a set of male and female bayonet with very small gap between them. In order to prevent leakage of liquid from inner pipe to bayonet. Teflon or Kel-F is located outside both the inner pipe of male and the guide of female. Even though liquid may leak at room temperature, it cannot leak at cryogenic temperature since Teflon shrinks much more than pipes and adheres closely to the inner pipe and guide. Teflon seal method has the advantage of easy fabrication, low cost and effective sealing compared to the conventional method.

  • PDF

What is Magnetic Fluid\ulcorner (자성 유체의 특성 및 응용)

  • Lee, Hyo-Suk
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.264-268
    • /
    • 2002
  • Magnetic fluid is a very stable colloid that is attracted by magnetic force as wholly. The magnetic fluids is composed with 10 nm magnetic materials such as magnetite, iron etc., which is dispersed homogeneously in solvent by coating surfactant on their surface. Also this colloid is not separated into magnetic particles and solvent even under magnetic field, centrifugal force, gravity. Due to these properties, the magnetic fluids is used in high vacuum seal, exclusion seal, damper, etc. I would like to introduce the specific properties and applications of the magnetic fluids.

Development and High Power RF Test of the Vacuum Feedthrough for KSTAR ICRF Antenna

  • Bae, Young-Dug;Hwang, Churl-Kew;Kwak, Jong-Gu
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.211-217
    • /
    • 2002
  • A 1-MW vacuum feedthrough for the KSTAR ICRF antenna is fabricated and high power RF test is performed. It is designed to have two alumina $(Al_2O_3)$ ceramic cylinders and O-ring seal instead of a brazed seal for good mechanical and thermal strength, which is important in long pulse or steady state operation. For cooling of the ceramics, dry air is circulated in a space between the two cylinders and the outer conductor. Independent cooling water channels are installed to cool the inner conductor of the feedthrough. RF high voltage test is performed using two kinds of ceramics with the purities of 99.7% and 97%. Stable operation is possible with the RF voltage of 30 kVp at long pulse of 300 sec without any severe damage.

Study of Seal-off Triggered Vacuum Switch(TVS) for High Voltage and High Current (고전압 대전류용, Seal-off TVS(Triggered Vacuum Switch) 연구)

  • Park, S.S.;Han, Y.J.;Kim, S.H.;Kwon, Y.K.;Kim, S.H.;Park, Y.J.;Hong, M.S.;Nam, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1823-1826
    • /
    • 2002
  • The purpose of this experiment was to develope Triggered Vacuum Switch (TVS) for the high voltage and high current. The TVS has an array of rods of alternate polarity in which a fixed gap spacing is maintained between the rods. The cross section of each rod has trapezoidal shape. It consists of electrode, ceramic chamber, getter and trigger. Currently, triggered vacuum switch (TVS) with seal-off has been designed and fabricated at PAL. An experimentation and trigger devices for TVS were designed for testing characteristics of electricity. For making the prototype of TVS, it is developed of fabrication process and fined of electrode material. The fabrication of the TVS is a lot of process which have manufacturing of part, chemical clean, ceramic brazing and metal welding. The fabricated TVS is tested of leak for vacuum, hold-off voltage and conditioning of trigger system. The TVS has pinch-off after it is removed of gas in the TVS and activated of getter in degassing furnace. The prototype TVS tested about 20 kV, 75 kA, 83 ${\mu}s$ with 100 kJ capacitor bank and inductance 5 ${\mu}H$. This paper describes the results of tests and the characteristics of the switch.

  • PDF