• Title/Summary/Keyword: Vacuum Circuit Breaker

Search Result 69, Processing Time 0.029 seconds

A Study on the DC High Speed Circuit Breaker(HSCB) in Electric Railway Substation System (전기철도 변전소의 직류고속도차단기 동작 감소방안에 관한 연구)

  • Heo, Tae-Bok;Kim, Hak-Lyun;Chang, Sang-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1303-1308
    • /
    • 2004
  • This paper proposes a reduction method for the mis-operation analysis of the DC High Speed Circuit Breaker(HSCB) in electric railway substation system. The analysis method is based on present condition of operation which is a method for accuracy level up. There is reason to operation of HSCB that it is mis-operation of fault detection relay(50F), operation of ground fault relay(64P), and trouble of electric car. A countermeasure is relay resetting through field test, induction of GTOCB(Gate Turn Off Thyristor Circuit Breaker), HSVCB(High Speed Vacuum Circuit Breaker), coordination with electric car. The results presented in the paper can be used as a reference for maintenance free in electric railway substation system.

  • PDF

Dynamic Characteristic Analysis of Permanent Magnetic Actuator with Multi-stage Coils for Vacuum Circuit Breaker (진공 차단기용 다단계 코일 영구 자석형 조작기의 동작 특성 해석)

  • Shin, Dong-Kyu;Kang, Jong-Ho;Bae, Chae-Yoon;Park, Sang-Hoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.61-63
    • /
    • 2005
  • In this paper, a new type of permanent magnetic actuator (PMA) with multi-stage coils is proposed. Although the conventional type of PMA has many advantages, it cannot be applied in the high voltage circuit breakers due to its short stoke length. The new type of PMA has long stroke length by using multi-stage coils, so it can be applied as an actuator for the high voltage circuit breakers. Dynamic characteristics are calculated by the finite element method (FEM), equation of electric circuit and dynamic equation. The position of plunger and the current of coils in case of the actuator applied in 38kV, 40kA vacuum circuit breaker are presented.

  • PDF

Development of VCB Driving Mechanism using Permanent Magnetic Actuator (자기 액츄에이터를 이용한 진공차단기 구동 메카니즘 개발)

  • 최명준;석복렬;김창욱;최영찬;박일한
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.381-389
    • /
    • 2003
  • Nowadays, Vacuum Circuit Breaker(VCB) is used in the most medium voltage level because vacuum has environment-friendly characteristics as well as excellent dielectric strength. In order to elevate the breaking performance, the improvement of vacuum interrupters and the driving mechanism should be proceeded. In this paper, the development of a Permanent Magnet Actuator could replace the mechanical spring mechanism which is the driving mechanism of existing VCB. The holding force and opening characteristics of magnetic actuator are analysed with FEM and the result is verified through experiment.

A Study on Vacuum Circuit Breaker Driving Mechanism (전공차단기 구동 메카니즘 연구)

  • Kim, Chang-Wook;Kim, Jin-Soo;Jang, Yong-Gu;Lee, Sang-Hun;Choi, Myung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.804-806
    • /
    • 2003
  • In these days the Vacuum Circuit Breaker(VCB) is used in most medium voltage level because VCB has merits of simple structure, long life, free maintenance and environment friendly characteristics. Most of VCBs adopt mechanical spring drive mechanism to operate vacuum interrupter, but this mechanism is composed of many components and needs frequent maintenance works. In this paper, we study about the VCB drive mechanism with Permanent Magnet Actuator (PMA). Design methods and design flows about PMA are presented. The magnetic equivalent circuit is used for elementary and detailed design to determine the size of PMA. Finite Element Method (FEM) analysis is performed to evaluate the behavior characteristics of PMA in both static and transient state. Finally we manufacture sample PMA and verify FEM analysis through experiments.

  • PDF

Development and Application of Distributed Multilayer On-line Monitoring System for High Voltage Vacuum Circuit Breaker

  • Mei, Fei;Mei, Jun;Zheng, Jianyong;Wang, Yiping
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.813-823
    • /
    • 2013
  • On-line monitoring system is important for high voltage vacuum circuit breakers (HVCBs) in operation condition assessment and fault diagnosis. A distributed multilayer system with client/server architecture is developed on rated voltage 10kV HVCB with spring operating mechanism. It can collect data when HVCB switches, calculate the necessary parameters, show the operation conditions and provide abundant information for fault diagnosis. Ensemble empirical mode decomposition (EEMD) is used to detect the singular point which is regarded as the contact moment. This method has been applied to on-line monitoring system successfully and its satisfactory effect has been proved through experiments. SVM and FCM are both effective methods for fault diagnosis. A combinative algorithm is designed to judge the faults of HVCB's operating mechanism. The system's precision and stability are confirmed by field tests.

Dynamic Behavior of Vacuum Circuit Breaker with Permanent Magnetic Actuator (영구자석형 조작기를 갖는 진공차단기의 동적거동)

  • Yu, Lyun;Kim, Young-Geun;Lee, Sung-Ho;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.578-585
    • /
    • 2007
  • A vacuum circuit breaker (VCB) with permanent magnet actuator (PMA) has been studied in this study. Electromagnetic field analysis and dynamic simulations have been carried out for optimal design of VCB by using commercial software Maxwell and ADAMS. This simulation model can be an effective method for the VCB, which has non-linear output force of PMA, friction, and impact for operations. An experiment has been conducted to evaluate correctness of the simulated model. By using this evaluated model, the displacement and velocity characteristics of the VCB have been simulated with following conditions : (1) The different output forces of PMA have been applied, (2) The friction conditions in follow lever shaft and moving part have been changed, (3) The mass conditions of moving part have been changed. The simulated results shows that the velocity characteristics are mainly determined by the output force of PMA. The effects due to the changes of friction conditions against the dynamic characteristics was small, and the mass conditions of the moving parts affect the velocity and a bouncing phenomenon of VCB. From these results, the optimal design conditions for the VCB have been derived.

Equivalent three-phase synthetic making test for medium voltage circuit breaker of distribution system using DC power (직류전원을 이용한 배전급 차단기의 등가 3상 합성투입시험법)

  • Park, Byung-Rak;Jo, Man-Yong;Kim, Jin-Seok;Shin, Hee-Sang;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.105-113
    • /
    • 2011
  • The study about three-phase synthetic making test using DC power has been performed in order to increase the making test capacity on Vacuum Circuit Breaker. And, it made possible to solve the limitations that short-circuit testing facilities can not fulfill the testing requirements of VCB exceeding three-phase 36[kV] 31.5[kA]. By using DC power and high speed spark-gap switch, this method made the equivalence with the pre-arc that occurred during the making process under the fault condition of power system. As results, KERI(Korea Electrotechnology Research Institute) could have capacity to carry out type test for VCB under three-phase 52[kV] 40[kV], which satisfies the IEC Standard.

The Electromagnetic Repulsion Force Analysis of Multipolar Axial Magnetic Field type Electrodes for Vacuum Interrupter (진공인터럽터용 다극 종자계전극의 전자반발력 해석)

  • Kim, Sung-Il;Park, Hong-Tae;Ahn, Hee-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.95-97
    • /
    • 1999
  • This paper describes electromagnetic repulsion force of multipolar axial magnetic field type electrodes for vacuum interrupter used in vacuum circuit breaker. It was distinguished that repulsion force of multipolar axial magnetic field type electrode in consideration of eddy current effect between upper electrode and lower electrode by finite element method. And it was found out that suitable contact weight of multipolar axial magnetic field type electrode for vacuum circuit breaker from repulsion force analysis results by finite element method.

  • PDF

Switching Surge Analysis of Vacuum Circuit breaker at the Power Plant distribution lines (발전소 비전계통 진공차단기의 스위칭 써지 해석)

  • Kim, Ik-Mo;Kim, Ji-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.305-308
    • /
    • 2001
  • The first objective of this study is to set up the switching surge analysis method in motor driving distribution system. The simplified model which can simulate the motor energization and circuit breaker re-ignitions, and each circuit element model is presented in this paper. The second objective is to calculate the quantify of surge over-voltage in real nuclear power station. And the surge suppressing measures are verified on the simulation basis. It is clarified that most cases are not satisfactory to meet the IEEE standard 522-1992 without using surge suppressing measures. In cases that the surge arrester are installed in distribution board at the load side of circuit breaker. The IEEE specification is fully met.

  • PDF

Switching Surge Analysis of Vacuum Circuit breaker using EMTP (EMTP를 이용한 진공차단기의 스위칭 써지 해석)

  • Kim, Ik-Mo;Kim, Ji-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2008-2010
    • /
    • 2000
  • The first objective of this study is to set up the switching surge analysis method in motor driving distribution system. The simplified model which can simulate the motor energization and circuit breaker re-ignitions. and each circuit element model is presented in this paper. The second objective is to calculate the quantity of surge over-voltage in real nuclear power station. And the surge suppressing measures are verified on the simulation basis. It is clarified that most cases are not satisfactory to meet the IEEE standard 522-1992 without using surge suppressing measures. In cases that the surge arrester are installed in distribution board at the load side of circuit breaker. The IEEE specification is fully met.

  • PDF