• Title/Summary/Keyword: Vaccine production

Search Result 246, Processing Time 0.032 seconds

Production of Monoclonal Antibodies Specific to FimA of Porphyromonas gingivalis and Their Inhibitory Activity on Bacterial Binding

  • Koh, Eun-Mi;Kim, Ju;Lee, Jin-Yong;Kim, Tae-Geum
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.203-207
    • /
    • 2009
  • Background: The FimA of Porphyromonas gingivalis is a crucial pathogenic component of the bacteria and has been implicated as a target for vaccine development against the periodontal diseases. Methods: In this study, the purified fimbriae (FimA subunit polymers) protein was used for immunization in their native form and B hybridoma clones producing antibodies specific to FimA were established. Results: The monoclonal antibodies prepared from selected two clones, designated #123 (IgG2b/ kappa) and #265 (IgG1/kappa), displayed different patterns of binding activity against the cognate antigen. Both antibodies reacted with conformational epitopes expressed by partially dissociated oligomers, but not with monomer as elucidated by Western blot analysis. Ascites fluid containing the monoclonal antibodies showed the inhibitory activity against P. gingivalis to saliva-coated hydroxyapatite beads, an in vitro model for the pellicle-coated tooth surface. Conclusion: These results suggest that the monoclonal antibodies could be used as vaccine material against the periodontal diseases through passive immunization.

Herpes Zoster Vaccination

  • Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.26 no.3
    • /
    • pp.242-248
    • /
    • 2013
  • Varicella (chickenpox) is a highly contagious airborne disease caused by primary infection with the varicella zoster virus (VZV). Following the resolution of chickenpox, the virus can remain dormant in the dorsal sensory and cranial ganglion for decades. Shingles (herpes zoster [HZ]) is a neurocutaneous disease caused by reactivation of latent VZV and may progress to postherpetic neuralgia (PHN), which is characterized by dermatomal pain persisting for more than 120 days after the onset of HZ rash, or "well-established PHN", which persist for more than 180 days. Vaccination with an attenuated form of VZV activates specific T-cell production, thereby avoiding viral reactivation and development of HZ. It has been demonstrated to reduce the occurrence by approximately 50-70%, the duration of pain of HZ, and the frequency of subsequent PHN in individuals aged ${\geq}50$ years in clinical studies. However, it has not proved efficacious in preventing repeat episodes of HZ and reducing the severity of PHN, nor has its long-term efficacy been demonstrated. The most frequent adverse reactions reported for HZ vaccination were injection site pain and/or swelling and headache. In addition, it should not be administrated to children, pregnant women, and immunocompromised persons or those allergic to neomycin or any component of the vaccine.

Lower Antibody Response in Chickens Homozygous for the Mx Resistant Allele to Avian Influenza

  • Qu, L.J.;Li, X.Y.;Xu, G.Y.;Ning, Z.H.;Yang, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.465-470
    • /
    • 2009
  • The chicken Mx gene has been regarded as a candidate gene for resistance to avian influenza virus (AIV). In this study, three groups of chickens with homozygotes (AA, GG) and heterozygotes (AG) of the resistant (A) and susceptible alleles (G) to AIV of the Mx gene were constructed from a line of dwarf egg-type chickens. These chickens were not examined for their resistant activities to AIV because the differential resistance had only been detected in vitro. The birds of the three groups were vaccinated with inactivated H5N2 AIV vaccine and the level of hemagglutination inhibition (HI) antibody to AIV was detected. The association between disease resistant activity to AIV and antibody response to AIV vaccination in the three groups was analyzed. The chickens with homozygous resistant allele A showed the lowest antibody levels, whereas the heterozygous chickens (AG) presented the highest antibody level after the boosting vaccination, which indicates that the efficiency of artificial selection on the resistant allele of Mx gene will be compromised since the homozygotes of the allele presented the weakest antibody response to the corresponding vaccine.

INHV (Infectious Hematopoietic Necrosis Virus): Past, Present and Future (IHNV (Infectious Hematopoietic Necrosis Virus): 과거, 현재, 그리고 미래)

  • Park, Jeong Woo;Cho, Miyoung;Lee, Unn Hwa;Choi, Hye Sung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.596-616
    • /
    • 2021
  • A global increase in fish consumption has led to a rapid expansion of aquaculture production, which has been linked to enhancing the spread of infectious diseases. Viral diseases can cause high mortality in many cultured fish species, posing a serious threat to the aquaculture industry. Infectious hematopoietic necrosis virus (IHNV) is one of the primary threats to aquacultured salmonid species, causing huge economic losses. Since the first report in cultured sockeye salmon Oncorhynchus nerka during the 1950s in North America, IHNV has spread to other regions, including Europe, Asia, South America, and Africa by transportation of infected fish and eggs, causing disease and increasing mortality in a wide variety of salmonid species. Here, we review existing information relevant to IHNV: its phylogenetic characteristics, origin, infection history, virulence determinants, susceptible hosts, vectors, and vaccine development. This review also addresses a possible cross-species transmission of IHNV to a new host, olive flounder Paralichthys olivaceus, a cultured fish of economic importance in East Asian countries.

IgY: A Key Isotype and Promising Antibody for the Immunoprophylaxis Therapy of Infectious Bursal Disease Virus Infections

  • Sanaullah Sajid;Sajjad ur Rahman;Mashkoor Mohsin;Zia ud Din Sindhu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.430-435
    • /
    • 2022
  • The infectious bursal disease (IBD) is a highly contagious and acute poultry disease caused by Birnavirus. However, the vaccination is the only disease prevention, but several factors impeded vaccine development. Thus, a need for time to develop a novel technique for managing and treating respiratory diseases in poultry birds. Passive immunization is a hope and a possible alternative used in birds to meet this need. The current research attempted to produce egg yolk-based polyclonal antibodies against the IBD virus. The benefits of IgY include ease of extraction, lack of reaction with mammalian Fc receptors, and low production cost. Commercial layers were immunized with inactivated IBD virus subcutaneously according to the treatment regimen. The eggs were gathered daily, and yolk antibodies were extracted with the ammonium sulfate precipitation technique. The use of an indirect hemagglutination test demonstrated that IgY was IBD-specific. Until the end of the experiment, the specific IgY immunoglobulins did not lose activity when stored at 4℃. The specific immunoglobulin (IgY) treated challenged birds were demonstrated 92% recovery in comparison to the control group. The study implies that the IBDV specific IgY is an easily prepared and rich source of antibodies and offers an alternative therapeutic agent to cure IBD-infected birds.

Studies on Developing Direct Gene Transfer Based on Naked Plasmid DNA for Treating Anemia (Naked Plasmid DNA를 이용한 빈혈 치료용 Direct Gene Transfer 시스템의 개발에 대한 연구)

  • Park Young Seoub;Jung Dong Gun;Choi Cha Yong
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.341-347
    • /
    • 2004
  • Several gene delivery therapies are being developed for treatment of serum protein deficiency. EPO is one of the most promising therapeutic agent for this treatment which is currently being investigated in depth. This study has the ultimate purpose of improving the gene delivery system for an increase of red blood cell production. A plasmid DNA was constructed smaller than other plasmids for an increase in penetration into animal cells, and two genes were cloned into each vector as a co-delivery system to express erythropoietin, and interluekin-3 or thrombopoietin, which can act on erythroid cell, thus activating hematopoiesis synergically. This co-delivery system has an advantage of decreasing the labour required for industrial production of DNA vaccine. A new plasmid vector, pVAC, in size 2.9 kb, was constructed with the essential parts from PUC 19 and pSectagB, which is much smaller than other plasmid vector and is the size of 2.9 kb. Co-delivery system was constituted by cloning human erythropoietin with each of human interluekin-3 gene or human thrombopoietin gene into both pVAC and pSectagB. As a result, the transfection efficiency of pVAC was higer than that of pSectagB in vitro, and hematocrit level of the mice injected with pVAC is higher than that of other mice. And co-delivery system, made of several plasmid DNAs, was expressed in vitro.

Production and Prophylactic Efficacy Study of Human Papillomavirus-like Particle Expressing HPV16 L1 Capsid Protein

  • Park, Jie-Yun;Pyo, Hyun-Mi;Yoon, Sun-Woo;Baek, Sun-Young;Park, Sue-nie;Kim, Chul-Joong;Haryoung Poo
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • To perform the prophylactic study of a vaccine derived from human papillomavirus (HPV) using Balb/c mice, we produced virus like particles consisting of HPV capsid protein L1 which has been reported to induce significant humoral and cellular immunity using various animal model systems. In order to produce HPV16 VLPs, the cDNA of L1 capsid protein in HPV type 16, obtained by polymerase chain reaction, was inserted into yeast expression vector, YEG$\alpha$-HIR525 under the control of GAL10 promoter. The transformation of YEG$\alpha$-HPV16 L1 was performed into the yeast Saccharomyces cerevisiae Y2805 by the lithium acetate method and the yeast clone expressing the highest level of L1 capsid protein of human papillomavirus type 16 was selected by Western blot analysis using anti-HPV16 L1 antibody. The purification of HPV16 VLP has been performed by the ultracentrifugation and gel-filtration methods. To validate the vaccine efficacy of the purified HPV16 VLPs and investigate the properties of HPV16 VLPs to induce humoral immunity, ELISA assay was performed. A significantly increased production of anti-HPV16 VLP antibodies was observed in sera from immunized mice. The neutralization activity of antibodies in the sera from the vaccinated mice was demonstrated by a rapid and simple assay to detect hemagglutihation inhibition activity.

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen;Tian, Xing-De;Huang, E.;Zhang, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.987-991
    • /
    • 2013
  • Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

The Adenylyl Cyclase Activator Forskolin Increases Influenza Virus Propagation in MDCK Cells by Regulating ERK1/2 Activity

  • Sang-Yeon Lee;Jisun Lee;Hye-Lim Park;Yong-Wook Park;Hun Kim;Jae-Hwan Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1576-1586
    • /
    • 2023
  • Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.

Enhancement of Apx Toxin Production in Actinobacillus pleuropneumoniae Serotypes 1, 2, and 5 by Optimizing Culture Conditions

  • Dao, Hoai Thu;Do, Van Tan;Truong, Quang Lam;Hahn, Tae-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1037-1043
    • /
    • 2020
  • Actinobacillus pleuropneumoniae (APP) is a causative agent of porcine pleuropneumonia. Therefore, the development of an effective vaccine for APP is necessary. Here, we optimized the culture medium and conditions to enhance the production yields of Apx toxins in APP serotype 1, 2, and 5 cultures. The use of Mycoplasma Broth Base (PPLO) medium improved both the quantity and quality of the harvested Apx toxins compared with Columbia Broth medium. Calcium chloride (CaCl2) was first demonstrated as a stimulation factor for the production of Apx toxins in APP serotype 2 cultures. Cultivation of APP serotype 2 in PPLO medium supplemented with 10 ㎍/ml of nicotinamide adenine dinucleotide (NAD) and 20 mM CaCl2 yielded the highest levels of Apx toxins. These findings suggest that the optimization of the culture medium and conditions increases the concentration of Apx toxins in the supernatants of APP serotype 1, 2, and 5 cultures and may be applied for the development of vaccines against APP infection.