DOI QR코드

DOI QR Code

Enhancement of Apx Toxin Production in Actinobacillus pleuropneumoniae Serotypes 1, 2, and 5 by Optimizing Culture Conditions

  • Dao, Hoai Thu (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Do, Van Tan (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Truong, Quang Lam (Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture) ;
  • Hahn, Tae-Wook (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • Received : 2019.12.25
  • Accepted : 2020.03.24
  • Published : 2020.07.28

Abstract

Actinobacillus pleuropneumoniae (APP) is a causative agent of porcine pleuropneumonia. Therefore, the development of an effective vaccine for APP is necessary. Here, we optimized the culture medium and conditions to enhance the production yields of Apx toxins in APP serotype 1, 2, and 5 cultures. The use of Mycoplasma Broth Base (PPLO) medium improved both the quantity and quality of the harvested Apx toxins compared with Columbia Broth medium. Calcium chloride (CaCl2) was first demonstrated as a stimulation factor for the production of Apx toxins in APP serotype 2 cultures. Cultivation of APP serotype 2 in PPLO medium supplemented with 10 ㎍/ml of nicotinamide adenine dinucleotide (NAD) and 20 mM CaCl2 yielded the highest levels of Apx toxins. These findings suggest that the optimization of the culture medium and conditions increases the concentration of Apx toxins in the supernatants of APP serotype 1, 2, and 5 cultures and may be applied for the development of vaccines against APP infection.

Keywords

References

  1. Sassu EL, Bosse JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. 2018. Update on Actinobacillus pleuropneumoniae−knowledge, gaps and challenges. Transbound. Emerg. Dis. 65 Suppl 1: 72-90. https://doi.org/10.1111/tbed.12739
  2. Liu J, Chen X, Lin L, Tan C, Chen Y, Guo Y, et al. 2007. Potential use an Actinobacillus pleuropneumoniae double mutant strain ${\Delta}apxIIC{\Delta}apxIVA$ as live vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine 25: 7696-7705. https://doi.org/10.1016/j.vaccine.2007.07.053
  3. Mei L, Zhou R, Lu HS, Bei WC, Liu WH, Lin LW, et al. 2006. Study on the immunogenicity of N-terminal polypeptide of RTX toxin I of Actinobacillus pleuropneumoniae. Chin. J. Biotechnol. 22: 39-45. https://doi.org/10.1016/S1872-2075(06)60005-8
  4. Bosse JT, Li Y, Sarkozi R, Fodor L, Lacouture S, Gottschalk M, et al. 2018. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet. Microbiol. 217: 1-6. https://doi.org/10.1016/j.vetmic.2018.02.019
  5. Ramjeet M, Deslandes V, Goure J, Jacques M. 2008. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim. Health. Res. Rev. 9: 25-45. https://doi.org/10.1017/S1466252307001338
  6. Frey J. 1995. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol. 3: 257-261. https://doi.org/10.1016/S0966-842X(00)88939-8
  7. Bosse JT, Janson H, Sheehan BJ, Beddek AJ, Rycroft AN, Kroll JS, et al. 2002. Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect. 4: 225-235. https://doi.org/10.1016/S1286-4579(01)01534-9
  8. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. 2010. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet. Res. 41: 65. https://doi.org/10.1051/vetres/2010037
  9. Del Pozo Sacristan R, Michiels A, Martens M, Haesebrouck F, Maes D. 2014. Efficacy of vaccination against Actinobacillus pleuropneumoniae in two Belgian farrow-to-finish pig herds with a history of chronic pleurisy. Vet. Rec. 174: 302. https://doi.org/10.1136/vr.101961
  10. Schaller A, Djordjevic SP, Eamens GJ, Forbes WA, Kuhn R, Kuhnert P, et al. 2001. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxIVA. Vet. Microbiol. 79: 47-62. https://doi.org/10.1016/S0378-1135(00)00345-X
  11. Schuchert JA, Inzana TJ, Angen O, Jessing S. 2004. Detection and identification of Actinobacillus pleuropneumoniae serotypes 1, 2, and 8 by multiplex PCR. J. Clin. Microbiol. 42: 4344-4348. https://doi.org/10.1128/JCM.42.9.4344-4348.2004
  12. Angen O, Ahrens P, Jessing SG. 2008. Development of a multiplex PCR test for identification of Actinobacillus pleuropneumoniae serovars 1, 7, and 12. Vet. Microbiol. 132: 312-318. https://doi.org/10.1016/j.vetmic.2008.05.010
  13. Lo TM, Ward CK, Inzana TJ. 1998. Detection and identification of Actinobacillus pleuropneumoniae serotype 5 by multiplex PCR. J. Clin. Microbiol. 36: 1704-1710. https://doi.org/10.1128/JCM.36.6.1704-1710.1998
  14. Frey J, Nicolet J. 1988. Regulation of hemolysin expression in Actinobacillus pleuropneumoniae serotype 1 by Ca2+. Infect. Immun. 56: 2570-2575. https://doi.org/10.1128/IAI.56.10.2570-2575.1988
  15. Nielsen R, van den Bosch JF, Plambeck T, Sorensen V, Nielsen JP. 2000. Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae. Vet. Microbiol. 71: 81-87. https://doi.org/10.1016/S0378-1135(99)00157-1
  16. Van Den Bosch JF (Boxmeer, NL). 1997. Actinobacillus pleuropneumoniae subunit vaccine. United States patent application 5648081.
  17. Wu HC, Yeh PH, Hsueh KJ, Yang WJ, Chu CY. 2018. Recombinant ApxIV protein enhances protective efficacy against Actinobacillus pleuropneumoniae in mice and pigs. J. Appl. Microbiol. 124: 1366-1376. https://doi.org/10.1111/jam.13726
  18. Haga Y, Ogino S, Ohashi S, Ajito T, Hashimoto K, Sawada T. 1997. Protective efficacy of an affinity-purified hemolysin vaccine against experimental swine pleuropneumonia. J. Vet. Med. Sci. 59: 115-120. https://doi.org/10.1292/jvms.59.115
  19. Frey J, Nicolet J. 1988. Purification and partial characterization of a hemolysin produced by Actinobacillus pleuropneumoniae type strain 4074. FEMS Microbiol. Lett. 55: 41-45. https://doi.org/10.1111/j.1574-6968.1988.tb02795.x
  20. Lee KE, Choi HW, Kim HH, Song JY, Yang DK. 2015. Prevalence and characterization of Actinobacillus pleuropneumoniae isolated from Korean pigs. J. Bacteriol. Virol. 45: 19-25. https://doi.org/10.4167/jbv.2015.45.1.19
  21. Komal JP, Mittal KR. 1990. Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice. Vet. Microbiol. 25: 229-240. https://doi.org/10.1016/0378-1135(90)90080-F
  22. Yuan F, Liu J, Guo Y, Tan C, Fu S, Zhao J, et al. 2011. Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae. Curr. Microbiol. 63: 574-580. https://doi.org/10.1007/s00284-011-0016-0
  23. Satran P, Nedbalcova K, Kucerova Z. 2003. Comparison of protection efficacy of toxoid and whole-cell vaccines against porcine pleuropneumonia caused by endotracheal infection with Actinobacillus pleuropneumoniae. Acta Vet. Brno 72: 213-219. https://doi.org/10.2754/avb200372020213
  24. Liao CW, Chiou HY, Yeh KS, Chen JR, Weng CN. 2003. Oral immunization using formalin-inactivated Actinobacillus pleuropneumoniae antigens entrapped in microspheres with aqueous dispersion polymers prepared using a co-spray drying process. Prev. Vet. Med. 61: 1-15. https://doi.org/10.1016/S0167-5877(02)00195-2
  25. Huter V, Hensel A, Brand E, Lubitz W. 2000. Improved protection against lung colonization by Actinobacillus pleuropneumoniae ghosts: characterization of a genetically inactivated vaccine. J. Biotechnol. 83: 161-172. https://doi.org/10.1016/S0168-1656(00)00310-2
  26. Jarma E, Regassa LB. 2004. Growth phase mediated regulation of the Actinobacillus pleuropneumoniae ApxI and ApxII toxins. Microb. Pathog. 36: 197-203. https://doi.org/10.1016/j.micpath.2003.11.005
  27. Hensel A, Stockhofe-Zurwieden N, Petzoldt K, Lubitz W. 1995. Oral immunization of pigs with viable or inactivated Actinobacillus pleuropneumoniae serotype 9 induces pulmonary and systemic antibodies and protects against homologous aerosol challenge. Infect. Immun. 63: 3048-3053. https://doi.org/10.1128/IAI.63.8.3048-3053.1995
  28. Crespo AL, Spencer TA, Nekl E, Pusztai-Carey M, Moar WJ, Siegfried BD. 2008. Comparison and validation of methods to quantify Cry1Ab toxin from Bacillus thuringiensis for standardization of insect bioassays. Appl. Environ. Microbiol. 74: 130-135. https://doi.org/10.1128/AEM.01855-07
  29. Knight MI, Chambers PJ. 2003. Problems associated with determining protein concentration: a comparison of techniques for protein estimations. Mol. Biotechnol. 23: 19-28. https://doi.org/10.1385/MB:23:1:19
  30. Phonvisay M, Lee JW, Liou JJ, Wang HY, Chu CY. 2019. Evaluation of long-term antibody response and cross-serotype reaction in ducks immunised with recombinant Riemerella anatipestifer outer membrane protein A and CpG ODN. J. Vet. Res. 63: 543-548. https://doi.org/10.2478/jvetres-2019-0066
  31. Dao HT, Truong QL, Do VT, Hahn TW. 2020. Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5. J. Vet. Sci. 21: e20. https://doi.org/10.4142/jvs.2020.21.e20
  32. Lin L, Bei W, Sha Y, Liu J, Guo Y, Liu W, et al. 2007. Construction and immunogencity of a ΔapxIC/ΔapxIIC double mutant of Actinobacillus pleuropneumoniae serovar 1. FEMS Microbiol. Lett. 274: 55-62. https://doi.org/10.1111/j.1574-6968.2007.00813.x
  33. Frey J. 2011. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet. Microbiol. 153: 51-58. https://doi.org/10.1016/j.vetmic.2011.05.018

Cited by

  1. A Multivalent Vaccine Containing Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae Antigens Elicits Strong Immune Responses and Promising Protection in Pigs vol.15, pp.1, 2021, https://doi.org/10.22207/jpam.15.1.11