In this paper we are concerned with estimation of tail related risk measures for heteroscedastic financial time series and VaR limits that VaR tells us nothing about the potential size of the loss given. So we use GARCH-EVT model describing the tail of the conditional distribution for heteroscedastic financial series and adopt Expected Shortfall to overcome VaR limits. The main results can be summarized as follows. First, the distribution of stock return series is not normal but fat tail and heteroscedastic. When we calculate VaR under normal distribution we can ignore the heavy tails of the innovations or the stochastic nature of the volatility. Second, GARCH-EVT model is vindicated by the very satisfying overall performance in various backtesting experiments. Third, we founded the expected shortfall as an alternative risk measures.
Kim, Yong-Tae;Shim, Joo-Yong;Lee, Jang-Taek;Hwang, Chang-Ha
Communications for Statistical Applications and Methods
/
v.16
no.5
/
pp.791-801
/
2009
Value-at-Risk(VaR) has been used as an important tool to measure the market risk. However, the selection of the VaR models is controversial. This paper proposes VaR forecast combinations using support vector machine quantile regression instead of selecting a single model out of historical simulation and GARCH.
Communications for Statistical Applications and Methods
/
v.16
no.6
/
pp.891-901
/
2009
In this paper, we investigate the approach to estimate VaR under the transformed GARCH model. The time series are transformed to approximate to the underlying distribution of error terms and then the parameters and the one-sided prediction interval are estimated with the transformed data. The back-transformation is applied to compute the VaR in the original data scale. The analyses on the asset returns of KOSPI and KOSDAQ are presented to verify the accuracy of the coverage probabilities of the proposed VaR.
Journal of the Korean Data and Information Science Society
/
v.22
no.6
/
pp.1065-1074
/
2011
During several decades, many researchers in the field of finance have studied Value at Risk (VaR) to measure the market risk. VaR indicates the worst loss over a target horizon such that there is a low, pre-specified probability that the actual loss will be larger (Jorion, 2006, p.106). In this paper, we compare conditional copula method with two conventional VaR forecasting methods based on simple moving average and exponentially weighted moving average for measuring the risk of the portfolio, consisting of two domestic stock indices. Through real data analysis, we conclude that the conditional copula method can improve the accuracy of portfolio VaR forecasting in the presence of high kurtosis and strong correlation in the data.
In this paper, we investigate the need to employ long-memory volatility models in terms of Value-at-Risk(VaR) estimation. We estimate the VaR of the KOSPI returns using long-memory volatility models such as FIGARCH and FIEGARCH; in addition, via back-testing we compare the performance of the obtained VaR with short memory processes such as GARCH and EGARCH. Back-testing says that there exists a long-memory property in the volatility process of KOSPI returns and that it is essential to employ long-memory volatility models for the right estimation of VaR.
In this study we suggested two optimization models to determine conversion weight of convertible bonds. The problem of this study is same as that of Park and Shim [1]. But this study used Value-at-Risk (VaR) for risk measurement instead of CVaR, Conditional-Value-at-Risk. In comparison with conventional Markowitz portfolio models, which use the variance of return, our models used VaR. In 1996, Basel Committee on Banking Supervision recommended VaR for portfolio risk measurement. But there are difficulties in solving optimization models including VaR. Benati and Rizzi [5] proved NP-hardness of general portfolio optimization problems including VaR. We adopted their approach. But we developed efficient algorithms with time complexity O(nlogn) or less for our models. We applied examples of our models to the convertible bond issued by a semiconductor company Hynix.
Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1263-1274
/
2013
VaR (value at risk), which represents the expectation of the worst loss that may occur over a period of time within a given level of confidence, is currently used by various financial institutions for the purpose of risk management. In the majority of previous studies, the probability of return has been modeled with normal distribution. Recently Chen et al. (2010) measured VaR with asymmetric Laplacian distribution. However, it is difficult to estimate the mode, the skewness, and the degree of variance that determine the shape of an asymmetric Laplacian distribution with limited data in the real-world market. In this paper, we show that the VaR estimated with (symmetric) Laplacian distribution model provides more accuracy than those with normal distribution model or asymmetric Laplacian distribution model with real world stock market data and with various statistical measures.
VaR에 의한 금융위험의 측정은 국제결제은행 바젤위원회의 내부모델 허용에 힘입어 금융산업에서 표준방식으로 확고한 입지를 차지하고 있다. 본 연구에서는 한국주식시장포트폴리오를 거래투자자산으로 보유한 경우의 VaR를 극단치이론에 입각하여 측정하고 이의 성과를 RiskMetrics의 성과와 비교하여 검토하였다. GPD의 모수적 추정에 의한 VaR의 사후검정결과는 표본내 사후검정이나 표본외 사후검정에서 어떤 신뢰수준에서도 기대되는 범위와 크게 벗어나지 않은 안정된 결과를 보였다. RiskMetrics의 EWMA방식도 역시 표본내와 표본외 사후검정 어느 경우에나 기대되는 범위에서 크게 벗어나지 않았지만 높은 신뢰수준에서는 그 성과가 GPD VaR에 비하여 상대적으로 불안정하였으며 위험의 과소평가 성향을 확인할 수 있었다. 비모수적 GEV추정에 입각한 VaR의 경우에는 위험을 과대평가하고 지나치게 보수적인 성향을 나타내었다. GPD의 모수적 접근에 의한 VaR 측정은 다양한 신뢰수준에서 정확한 검정결과를 보여주고 있으며, 시간적 흐름에 따르는 VaR의 행태도 지나친 변동성을 보이지 않아 외부규제 및 내부통제를 위한 금융위험의 측정지표로서 실용적인 가치가 있음을 확인할 수 있다.
Journal of the Korean Data and Information Science Society
/
v.16
no.2
/
pp.283-288
/
2005
Value at Risk(VaR) has been proven useful in finance literature as a tool of risk management(cf. Jorion(2001)). This article is concerned with introducing VaR to various Korean financial time series. Five daily data sets with sample period ranging from 2000 and 2004 such as KOSPI, KOSPI 200, KOSDAQ, KOSDAQ 50 and won-dollar exchange rate are analyzed using GARCH modeling and in turn VaR is obtained for each data.
VaR is now widely used as an important tool to evaluate and manage financial risks. In particular, it is important to select an appropriate volatility model for the rate of return of financial assets. In this study, both univariate and multivariate models are considered to evaluate VaR of the portfolio composed of KOSPI, Hang-Seng, Nikkei indexes, and their performances are compared through back testing techniques. Overall, multivariate models are shown to be more appropriate than univariate models to estimate the portfolio VaR, in particular DCC and ADCC models are shown to be more superior than others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.