• Title/Summary/Keyword: VSMCs

Search Result 81, Processing Time 0.028 seconds

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.

Study of Sophorae Radix on $H_2O_2$-mediated Apoptosis and Total Protein Expression Pattern in Vascular Smooth Muscle Cells (고삼이 $H_2O_2$에 의한 대동맥 평활근세포 고사 및 전체 단백질 발현에 미치는 영향)

  • Jeon In Cheol;Jeong Jae Eun;Son In Hwan;Lee Ju Seok;Jeong Seung Won;Jang Jae Ho;Lee Seon U;Lee In;Moon Byun Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1652-1660
    • /
    • 2004
  • Apoptosis of vascular smooth muscle cells(VSMCs) is essential in atherogenesis, being a factor that modulates its early progression rather than a terminal event in the course of the disease. Various stimuli, including oxide lipoproteins, altered hemodynamic stress and free radical, can induced VSMCs apoptosis in vitro. The protective effects of Sophorae Radix (SR) on apoptotic cell death induced by H₂O₂ were investigated in VSMCs. The viability of VSMCs was markedly decreased by H₂O₂. Sophorae Radix protected the H202-induced apoptotic death of VSMCs, which was characterized as nuclear fragmentation and increase of sub-G0/G1 fraction .. Sophorae Radix decreased the activation of caspase-3 like protease induced by H₂O₂ and recovered control level from H202-induced PARP, Bak, Bcl-XL and mitochondrial membrane potential. These results suggest that Sophorae Radix protected VSMCs apoptotic death induced by H₂O₂ via inactivation of caspase-3 and modulation of mitochondrial function. Also, the expression profile of proteins by using two-dimensional (2-D) gel electrophoresis was screened. Future investigations will need to explore the use of an anti atherosclerotic therapy of Sophorae Radix, which relies on inhibition of the proapoptotic activation of the vascular smooth muscle cells.

Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations

  • Ryu, Jeong Yeop;Park, Tae Hyun;Lee, Joon Seok;Oh, Eun Jung;Kim, Hyun Mi;Lee, Seok-Jong;Lee, Jongmin;Lee, Sang Yub;Huh, Seung;Kim, Ji Yoon;Im, Saewon;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.115-120
    • /
    • 2022
  • Background In addition to vascular endothelial cells, vascular smooth muscle cells (VSMCs) are subject to continuous shear stress because of blood circulation. The angiogenic properties of VSMCs in extracranial arteriovenous malformations (AVMs) may exceed those of normal blood vessels if the body responds more sensitively to mechanical stimuli. This study was performed to investigate the hypothesis that rapid angiogenesis may be achieved by mechanical shear stress. Methods VSMCs were obtained from six patients who had AVMs and six normal controls. The target genes were set to angiopoietin-2 (AGP2), aquaporin-1 (AQP1), and transforming growth factor-beta receptor 1 (TGFBR1). Reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were implemented to identify the expression levels for target genes. Immunofluorescence was also conducted. Results Under the shear stress condition, mean relative quantity values of AGP2, AQP1, and TGFBR1 in AVM tissues were 1.927±0.528, 1.291±0.031, and 2.284±1.461 when compared with neutral conditions. The expression levels of all three genes in AVMs were higher than those in normal tissue except for AQP1 under shear stress conditions. Immunofluorescence also revealed increased staining of shear stress-induced genes in the normal tissue and in AVM tissue. Conclusions Shear stress made the VSMCs of AVMs more sensitive. Although the pathogenesis of AVMs remains unclear, our study showed that biomechanical stimulation imposed by shear stress may aggravate angiogenesis in AVMs.

Effects and Molecular Mechanisms of Eupatorium chinensis var. simplicifolium Extract on Abnormal Proliferation of Vascular Smooth Muscle Cells (등골나물추출물의 혈관 평활근 세포의 비정상 증식에 대한 억제 효과 및 분자기작)

  • Kim, Min-Jeong;Kim, Jihee;Lee, Jin-Ho;Kim, Minah;Woo, Keunjung;Kim, Han Sung;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.787-795
    • /
    • 2021
  • Eupatorium chinensis var. simplicifolium (EUC) has anti-inflammatory and antioxidant effects. Young sprouts of EUC have been used as food for a long time, and the whole EUC plant has been used as an herbal remedy in oriental medicine. Arteriosclerosis, or chronic inflammation in arterial vessels, is a cardiovascular disease and is involved in various disorders. Cardiovascular diseases such as restenosis and neuropathic hyperplasia are mainly caused by abnormal growth and movement due to multiple growth factors in vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is a mitogen released from damaged vessel walls and is involved in the proliferation and migration of VSMCs. To determine the effects of EUC on the abnormal proliferation and migration of VSMCs, the present study investigated intracellular signaling pathways in PDGF-BB-induced VSMCs treated with and without EUC. Pretreating PDGF-BB-induced VSMCs with EUC tended to effectively decrease cell proliferation and migration. Subsequently, the intracellular growth-related signaling pathways of AKT, phospholipase C gamma (PLC-γ), and mitogen-activated protein kinase (MAPK) were investigated using western blotting to confirm inhibited phosphorylation. Furthermore, flow cytometry data showed that EUC blocked the cell cycle of VSMCs. These results suggest that EUC can inhibit the proliferation and migration of VSMCs by controlling the cell cycle and growth factor receptors. Furthermore, this indicates that EUC can be used as a preventative against cardiovascular disease resulting from abnormal proliferation and migration of VSMCs.

Role of zinc for calcification inhibitor protein in vascular smooth muscle cell plaque formation (혈관 플라그 형성 저해단백질에 대한 아연의 기능)

  • Shin, Mee-Young;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.49 no.1
    • /
    • pp.59-62
    • /
    • 2016
  • Purpose: Zinc, a biomineral present within and outside cells, manages various cellular mechanisms. In this study, we examined whether zinc was involved in vascular smooth muscle cell (VSMC) calcification via regulation of calcification inhibitor protein, osteopontin (OPN). Methods: Rat aorta cell line (A7r5 cells) and primary vascular smooth muscle cells (pVSMCs) from rat aorta were cultured with phosphate (1-5 mM) and zinc ($0-15{\mu}M$) as appropriate, along with osteoblasts (MC3T3-E1) as control. The cells were then stained for Ca and P deposition for calcification examination as well as osteopontin expression as calcification inhibitor protein was measured. Results: Both Ca and phosphate deposition increased as the addition of phosphate increased. In the same manner, the expression of osteopontin was upregulated as the addition of phosphate increased in both cell types. When zinc was added, Ca and P deposition decreased in VSMCs, while it increased in osteoblasts. Conclusion: The results imply that zinc may prevent VSMC calcification by stimulating calcification inhibitor protein OPN synthesis in VSMCs.

Feasibility of simultaneous measurement of cytosolic calcium and hydrogen peroxide in vascular smooth muscle cells

  • Chang, Kyung-Hwa;Park, Jung-Min;Lee, Moo-Yeol
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.600-605
    • /
    • 2013
  • Interplay between calcium ions ($Ca^{2+}$) and reactive oxygen species (ROS) delicately controls diverse pathophysiological functions of vascular smooth muscle cells (VSMCs). However, details of the $Ca^{2+}$ and ROS signaling network have been hindered by the absence of a method for dual measurement of $Ca^{2+}$ and ROS. Here, a real-time monitoring system for $Ca^{2+}$ and ROS was established using a genetically encoded hydrogen peroxide indicator, HyPer, and a ratiometric $Ca^{2+}$ indicator, fura-2. For the simultaneous detection of fura-2 and HyPer signals, 540 nm emission filter and 500 nm~ dichroic beamsplitter were combined with conventional exciters. The wide excitation spectrum of HyPer resulted in marginal cross-contamination with fura-2 signal. However, physiological $Ca^{2+}$ transient and hydrogen peroxide were practically measurable in HyPer-expressing, fura-2-loaded VSMCs. Indeed, distinct $Ca^{2+}$ and ROS signals could be successfully detected in serotonin-stimulated VSMCs. The system established in this study is applicable to studies of crosstalk between $Ca^{2+}$ and ROS.

Phosphate-Induced Rat Vascular Smooth Muscle Cell Calcification and the Implication of Zinc Deficiency in A7r5 Cell Viability

  • Shin, Mee-Young;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • The calcification of vascular smooth muscle cells (VSMCs) is considered one of the major contributors for vascular disease. Phosphate is known as the inducer for VSMC calcification. In this study, we assessed whether phosphate affected cell viability and fetuin-A, a calcification inhibitor protein, both which are related to VSMC calcification. Also, VSMC viability by zinc level was assessed. The results showed that phosphate increased Ca and P deposition in VSMCs (A7r5 cell line, rat aorta origin). This phosphate-induced Ca and P deposition was consistent with the decreased A7r5 cell viability (P<0.05), which implies phosphate-induced calcification in A7r5 cells might be due to the decreased VSMC cell viability. As phosphate increased, the protein expression of fetuin-A protein was up-regulated. A7r5 cell viability decreased as the addition of cellular zinc level was decreased (P<0.05). The results suggested that zinc deficiency causes the decreased cell viability and it would be the future study to clarify how zinc does act for VSMC cell viability. The results suggest that the decreased VSMC viability by high P or low Zn in VSMCs may be the risk factor for vascular disease.

Neuromedin B modulates phosphate-induced vascular calcification

  • Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yeon;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.569-574
    • /
    • 2021
  • Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB-NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification.

Insulin Like Growth Factor Binding Protein-5 Regulates Excessive Vascular Smooth Muscle Cell Proliferation in Spontaneously Hypertensive Rats via ERK 1/2 Phosphorylation

  • Lee, Dong Hyup;Kim, Jung Eun;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • Insulin-like growth factor binding proteins (IGFBPs) are important components of insulin growth factor (IGF) signaling pathways. One of the binding proteins, IGFBP-5, enhances the actions of IGF-1, which include the enhanced proliferation of smooth muscle cells. In the present study, we examined the expression and the biological effects of IGFBP-5 in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The levels of IGFBP-5 mRNA and protein were found to be higher in the VSMC from SHR than in those from WKY. Treatment with recombinant IGFBP-5-stimulated VSMC proliferation in WKY to the levels observed in SHR. In the VSMCs of WKY, incubation with angiotensin (Ang) II or IGF-1 dose dependently increased IGFBP-5 protein levels. Transfection with IGFBP-5 siRNA reduced VSMC proliferation in SHR to the levels exhibited in WKY. In addition, recombinant IGFBP-5 significantly up-regulated ERK1/2 phosphorylation in the VSMCs of WKY as much as those of SHR. Concurrent treatment with the MEK1/2 inhibitors, PD98059 or U0126 completely inhibited recombinant IGFBP-5-induced VSMC proliferation in WKY, while concurrent treatment with the phosphatidylinositol-3 kinase inhibitor, LY294002, had no effect. Furthermore, knockdown with IGFBP-5 siRNA inhibited ERK1/2 phosphorylation in VSMC of SHR. These results suggest that IGFBP-5 plays a role in the regulation of VSMC proliferation via ERK1/2 MAPK signaling in hypertensive rats.

Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

  • Hwang, Jung Seok;Han, Sung Gu;Lee, Chi-Ho;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.917-925
    • /
    • 2017
  • Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang II-induced vascular aging as a dietary supplement.