• 제목/요약/키워드: VSMCs

검색결과 81건 처리시간 0.03초

Zinc Restored the Decreased Vascular Smooth Muscle Cell Viability under Atherosclerotic Calcification Conditions

  • Shin, Mee-Young;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.363-366
    • /
    • 2014
  • Zinc is considered to be involved in maintaining healthy vascular condition. Atherosclerotic calcification of vascular smooth muscle cells (VSMCs) occurs via the mechanism of cell death; therefore, cell viability is a critical factor for preventing VSMC calcification. In this study, we tested whether zinc affected VSMC viability under both normal physiological non-calcifying (0 mM P) and atherosclerotic calcifying conditions (3 and 5 mM P), since VSMC physiological characters change during the VSMC calcification process. The study results showed that an optimal zinc level ($15{\mu}M$) restored the decreased VSMC viability which was induced under low zinc levels (0 and $1{\mu}M$) and calcifying conditions (3 and 5 mM P) at 9 and 15 days culture. This zinc-protecting effect for VSMC viability is more prominent under atherosclerotic calcifying condition (3 and 5 mM P) than normal condition (0 mM P). Also, the increased VSMC viability was consistent with the decreased Ca and P accumulation in VSMC cell layers. The results suggested that zinc could be an effective biomineral for preventing VSMC calcification under atherosclerotic calcifying conditions.

Lipopolysaccharide Inhibits Proliferation of the Cultured Vascular Smooth Muscle Cells by Stimulating Inducible Nitric Oxide Synthase and Subsequent Activation of Guanylate Cyclase

  • Choi, Hyoung-Chul;Lee, Sang-Gon;Kim, Jong-Ho;Kim, Joo-Young;Sohn, Uy-Dong;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.343-351
    • /
    • 2001
  • This study was undertaken to investigate the mechanism of lipopolysaccharide (LPS) and nitric oxide (NO) as a regulator of vascular smooth muscle cell (VSMC) proliferation. VSMC was primarily cultured from rat aorta and confirmed by the immunocytochemistry with anti-smooth muscle myosin antibody. The number of viable VSMCs were counted, and lactate dehydrogenase (LDH) activity was measured to assess the degree of cell death. Concentrations of nitrite in the culture medium were measured as an indicator of NO production. LPS was introduced into the medium to induce the inducible nitric oxide synthase (iNOS) in VSMC, and Western blot for iNOS protein and RT-PCR for iNOS mRNA were performed to confirm the presence of iNOS. Inhibitors of iNOS and soluble guanylate cyclase (sGC), sodium nitroprusside (SNP) and L-arginine were employed to observe the action of LPS on the iNOS-NO-cGMP signalling pathway. LPS and SNP decreased number of VSMCs and increased the nitrite concentration in the culture medium, but there was no significant change in LDH activity. A cell permeable cGMP derivative, 8-Bromo-cGMP, decreased the number of VSMCs with no significant change in LDH activity. L-arginine, an NO substrate, alone tended to reduce cell count without affecting nitrite concentration or LDH level. Aminoguanidine, an iNOS specific inhibitor, inhibited LPS-induced reduction of cell numbers and reduced the nitrite concentration in the culture medium. LY 83583, a guanylate cyclase inhibitor, suppressed the inhibitory actions of LPS and SNP on VSMC proliferation. LPS increased amounts of iNOS protein and iNOS mRNA in a concentration-dependent manner. These results suggest that LPS inhibits the VSMC proliferation via production of NO by inducing iNOS gene expression. The cGMP which is produced by subsequent activation of guanylate cyclase would be a major mediator in the inhibitory action of iNOS-NO signalling on VSMC proliferation.

  • PDF

Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors

  • Ha, Jung Min;Yun, Sung Ji;Jin, Seo Yeon;Lee, Hye Sun;Kim, Sun Ja;Shin, Hwa Kyoung;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.37-44
    • /
    • 2017
  • Regulation of vascular smooth muscle cell (VSMC) phenotype plays an essential role in many cardiovascular diseases. In the present study, we provide evidence that $kr{\ddot{u}}ppel$-like factor 8 (KLF8) is essential for tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)-induced phenotypic conversion of VSMC obtained from thoracic aorta from 4-week-old SD rats. Stimulation of the contractile phenotype of VSMCs with $TNF{\alpha}$ significantly reduced the VSMC marker gene expression and KLF8. The gene expression of KLF8 was blocked by $TNF{\alpha}$ stimulation in an ERK-dependent manner. The promoter region of KLF8 contained putative Sp1, KLF4, and $NF{\kappa}B$ binding sites. Myocardin significantly enhanced the promoter activity of KLF4 and KLF8. The ectopic expression of KLF4 strongly enhanced the promoter activity of KLF8. Moreover, silencing of Akt1 significantly attenuated the promoter activity of KLF8; conversely, the overexpression of Akt1 significantly enhanced the promoter activity of KLF8. The promoter activity of SMA, $SM22{\alpha}$, and KLF8 was significantly elevated in the contractile phenotype of VSMCs. The ectopic expression of KLF8 markedly enhanced the expression of SMA and $SM22{\alpha}$ concomitant with morphological changes. The overexpression of KLF8 stimulated the promoter activity of SMA. Stimulation of VSMCs with $TNF{\alpha}$ enhanced the expression of KLF5, and the promoter activity of KLF5 was markedly suppressed by KLF8 ectopic expression. Finally, the overexpression of KLF5 suppressed the promoter activity of SMA and $SM22{\alpha}$, thereby reduced the contractility in response to the stimulation of angiotensin II. These results suggest that cross-regulation of KLF family of transcription factors plays an essential role in the VSMC phenotype.

혈관평활근세포에서 HSP90에 의한 IL-6 발현에 TLR-4와 NF-κB의 작용 (Roles of TLR-4 and NF-κB in Interleukin-6 Expression Induced by Heat Shock Protein 90 in Vascular Smooth Muscle Cells)

  • 임병용;김강성;김관회
    • 생명과학회지
    • /
    • 제18권12호
    • /
    • pp.1637-1643
    • /
    • 2008
  • HSP90에 노출된 혈관평활근세포에서 IL-6 transcript가 증가하고, IL-6 단백질의 분비가 증가하며, 또한 IL-6 유전자의 promote가 활성화되었다. HSP90에 의한 IL-6 유전자의 promoter 활성화는 dominant negative 형태의 TLR-4와 MyD88에 의하여 크게 감소되었지만, dominant negative 형태의 TLR-3와 TRIF의 영향을 받지 않았다. 그리고 TLR-4의 이합체화(dimerization)를 저해하는 curcumin은 HSP90에 의한 IL-6의 분비 및 IL-6 유전자 promoter 활성화를 억제하였다. 그리고 IL-6 유전자의 promoter의 NF-${\kappa}B$- 또는 C/EBP-binding sequence에 변이는 HSP90에 의한 IL-6 유전자의 promoter 활성화 억제하였다. 이러한 결과는 혈관평활근세포에서 HSP90에 의한 IL-6 유전자 활성화에 TLR-4와 NF-${\kappa}B$B가 관여함을 의미한다.

5,8-Dimethoxy-2-Nonylamino-Naphthalene-1,4-Dione Inhibits Vascular Smooth Muscle Cell Proliferation by Blocking Autophosphorylation of PDGF-Receptor ${\beta}$

  • Kim, Yohan;Lee, Jung-Jin;Lee, Sang-Gil;Jung, Sang-Hyuk;Han, Joo-Hui;Yang, So Young;Yun, Eunju;Song, Gyu-Yong;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.203-208
    • /
    • 2013
  • As the abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis and vascular restenosis, a candidate drug with antiproliferative properties is needed. We investigated the antiproliferative action and underlying mechanism of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ), using VSMCs treated with platelet-derived growth factor (PDGF). 2-Nonylamino-DMNQ inhibited proliferation and cell number of VSMCs induced by PDGF, but not epidermal growth factor (EGF), in a concentration-dependent manner without any cytotoxicity. This derivative suppressed PDGF-induced $[^3H]$-thymidine incorporation, cell cycle progression from $G_0/G_1$ to S phase, and the phosphorylation of phosphor-retinoblastoma protein (pRb) as well as the expression of cyclin E/D, cyclin-dependent kinase (CDK) 2/4, and proliferating cell nuclear antigen (PCNA). Importantly, 2-nonylamino-DMNQ inhibited the phosphorylation of PDGF receptor${\beta}$(PDGF-$R{\beta}$) enhanced by PDGF at $Tyr^{579}$, $Tyr^{716}$, $Tyr^{751}$, and $Tyr^{1021}$ residues. Subsequently, 2-nonylamino-DMNQ inhibited PDGF-induced phosphorylation of STAT3, ERK1/2, Akt, and $PLC{\gamma}1$. Therefore, our results indicate that 2-nonylamino-DMNQ inhibits PDGF-induced VSMC proliferation by blocking PDGF-$R{\beta}$ autophosphorylation, and subsequently PDGF-$R{\beta}$-mediated downstream signaling pathways.

NQ304, A NOVEL ANTITHROMBOTIC AGENT, INHIBITS THE PROLIFERATION OF VASCULAR SMOOTH MUSCLE CELLS

  • Kim, Jin-Ho;Kim, Tack-Joong;Ryu, Chung-Kyu;Hong, Jin-Tae;Yun, Yeo-Pyo
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.119-119
    • /
    • 2002
  • Several 1,4-naphthoquinone derivatives have been reported to possess many pharmacological effects such as anti-viral, anti-fungal, anti-cancer and anti-platelet activities. However, little has been known about functional role in vascular smooth muscle cells (VSMCs).(omitted)

  • PDF

Quercetin-induced apoptosis ameliorates vascular smooth muscle cell senescence through AMP-activated protein kinase signaling pathway

  • Kim, Seul Gi;Sung, Jin Young;Kim, Jae-Ryong;Choi, Hyoung Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.69-79
    • /
    • 2020
  • Aging is one of the risk factors for the development of cardiovascular diseases. During the progression of cellular senescence, cells enter a state of irreversible growth arrest and display resistance to apoptosis. As a flavonoid, quercetin induces apoptosis in various cells. Accordingly, we investigated the relationship between quercetin-induced apoptosis and the inhibition of cellular senescence, and determined the mechanism of oxidative stress-induced vascular smooth muscle cell (VSMC) senescence. In cultured VSMCs, hydrogen peroxide (H2O2) dose-dependently induced senescence, which was associated with increased numbers of senescence-associated β-galactosidase-positive cells, decreased expression of SMP30, and activation of p53-p21 and p16 pathways. Along with senescence, expression of the anti-apoptotic protein Bcl-2 was observed to increase and the levels of proteins related to the apoptosis pathway were observed to decrease. Quercetin induced apoptosis through the activation of AMP-activated protein kinase. This action led to the alleviation of oxidative stress-induced VSMC senescence. Furthermore, the inhibition of AMPK activation with compound C and siRNA inhibited apoptosis and aggravated VSMC senescence by reversing p53-p21 and p16 pathways. These results suggest that senescent VSMCs are resistant to apoptosis and quercetin-induced apoptosis attenuated the oxidative stress-induced senescence through activation of AMPK. Therefore, induction of apoptosis by polyphenols such as quercetin may be worthy of attention for its anti-aging effects.

Long Term Effect of High Glucose and Phosphate Levels on the OPG/RANK/RANKL/TRAIL System in the Progression of Vascular Calcification in rat Aortic Smooth Muscle Cells

  • Kang, Yang Ho;Jin, Jung Sook;Son, Seok Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.111-118
    • /
    • 2015
  • Osteoprotegerin (OPG), receptor activator of NF-${\kappa}B$ ligand (RANKL)/receptor activator of NF-${\kappa}B$ (RANK) axis, and TNF-related apoptosis-inducing ligand (TRAIL) participate in vascular calcification process including atherosclerosis, but their contributions under high glucose (HG) and phosphate (HP) condition for a long-term period (more than 2 weeks) have not been fully determined. In this study, we evaluated the effects of HG and HP levels over 2 or 4 weeks on the progression of vascular calcification in rat vascular smooth muscle cells (VSMCs). Calcium deposition in VSMCs was increased in medium containing HG (30 mmol/L D-glucose) with ${\beta}$-glycerophosphate (${\beta}$-GP, 12 mmol/L) after 2 weeks and increased further after 4 weeks. OPG mRNA and protein expressions were unchanged in HG group with or without ${\beta}$-GP after 2 weeks. However, after 4 weeks, OPG mRNA and protein expressions were significantly lower in HG group with ${\beta}$-GP. No significant expression changes were observed in RANKL, RANK, or TRAIL during the experiment. After 4 weeks of treatment in HG group containing ${\beta}$-GP and rhBMP-7, an inhibitor of vascular calcification, OPG expressions were maintained. Furthermore, mRNA expression of alkaline phosphatase (ALP), a marker of vascular mineralization, was lower in the presence of rhBMP-7. These results suggest that low OPG levels after long term HG and phosphate stimulation might reduce the binding of OPG to RANKL and TRAIL, and these changes could increase osteo-inductive VSMC differentiation, especially vascular mineralization reflected by increased ALP activity during vascular calcification.

Roles of ERK and NF-${\kappa}$ B in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells

  • Kang, Seung-Hun;Lee, Ji-Hyuk;Choi, Kyung-Ha;Rhim, Byung-Yong;Kim, Koan-Hoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.171-176
    • /
    • 2008
  • Heat shock proteins (HSPs) serve as molecular chaperones and play a role in cell protection from damage in response to stress stimuli. The aim of this article is to investigate whether HSP22 affects IL-8 expression in vascular smooth muscle cells (VSMCs), and which cellular factors are involved in the HSP-mediated IL-8 induction in that cell type in terms of mitogen activated protein kinase (MAPK) and transcription element. Exposure of aortic smooth muscle cells (AoSMCs) to HSP22 not only enhanced IL-8 release but also induced IL-8 transcript via promoter activation. HSP22 activated ERK and p38 MAPK in AoSMCs. HSP22-induced IL-8 release was inhibited by U0126, but not by SB202190. A mutation in the IL-8 promoter region at the binding site of NF-${\kappa}$ B, but not AP-1 or C/EBP, impaired promoter activation in response to HSP22. Delivery of I ${\kappa}$ B, but not dominant negative c-Jun, lowered HSP22-induced IL-8 release from AoSMCs. These results suggest that HS P22 induces IL-8 in VSMCs via ERK1/2, and that transcription factor NF-kB may be required for the HSP22-induced IL-8 up-regulation.

Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells

  • Jeong, Ji Young;Son, Younghae;Kim, Bo-Young;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.549-555
    • /
    • 2015
  • We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors /PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.