• Title/Summary/Keyword: VOF 법

Search Result 91, Processing Time 0.026 seconds

Numerical Analysis of a Liquid Sheet Flow around a Simplified Sprinkler Head Using a CFD Model (CFD 모델을 이용한 단순 스프링클러 헤드 주위의 액막 유동해석)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.111-117
    • /
    • 2016
  • The present study examined the free surface flow of a liquid sheet near a sprinkler head using a Computational Fluid Dynamics (CFD) model and considered the feasibility of the empirical model for predicting the initial spray characteristics of the sprinkler head through a comparison of the CFD results. The CFD calculation for a simplified sprinkler geometry considering the nozzle and deflector were performed using the commercially available CFD package, CFX 14.0 with the standard $k-{\varepsilon}$ turbulence model and theVolume of Fluid (VOF) method. The predicted velocity of the empirical model at the edge of deflector were in good agreement with that of the CFD model for the flat plate region but there was a certain discrepancy between the two models for the complex geometry region. The mean droplet diameter predicted by the empirical model differed significantly from the measured value of the real sprinkler head. On the other hand, the empirical model can be used to understand the mechanism of droplet formation near the sprinkler head and predict the initial spray characteristics for cases without experimental data.

Numerical Study on the Inlet Head Configuration of Multi-Phase Separator for Modularization (다상유동 분리기 모듈화를 위한 유입구 형상 설계에 관한 수치해석적 연구)

  • Hong, Chang-Ki;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.571-577
    • /
    • 2017
  • In this numerical study, the separation efficiency of three-phase separator in an oil-sand plant was studied with various inlet head configurations. The free water knockout (FWKO) vessel was designed with a flow rate of $15.89m^3/day$ (100 bbl/day) and the SOR(stream-to-oil ratio)=3.5 was derived using Stokes' law. For modularization, optimization of the design of the inlet head configuration was performed with parallel-connected dual FWKO vessels. The feed condition of bitumen emulsion was API=17, $T_{in}=150^{\circ}C$ and $P_{in}=50bar$. A mean residence time was determined the time when 95% of the oil and water in FWKO vessel was separated. The combination between the volume of fluid (VOF) and the discrete phase model (DPM) was used to simulate the phase separation phenomenon in a multi-phase separator. Furthermore, in order to calculate multi-phase flow the pseudo-transient method was adopted.

A Numerical Study on Flow in Porous Structure using Non-Hydrostatic Model (비정수압 수치모형을 이용한 다공성 구조물의 유동에 관한 수치적 연구)

  • Shin, Choong Hun;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-122
    • /
    • 2018
  • This paper introduces a non-hydrostatic wave model SWASH for simulating wave interactions with porous structures. This model calculates the flow in porous media based on volume-averaged Reynolds-averaged Navier-Stokes equations (VARANS) in ${\sigma}$-coordinate. The empirical coefficients of resistance used to account for the flow in a porous media often need to be measured or calibrated. In this study, the empirical resistance coefficients used in the model are calibrated and validated using laboratory experiments, involving dam-break flow through porous media, and solitary wave interactions with a porous structure. It is shown that the agreement between experimental and numerical results is generally satisfactory. It is also confirmed that non-hydrodynamic model, SWASH, is computationally much more efficient than the three-dimensional porous flow models based on VOF approach.

NUMERICAL SIMULATION OF MULTIPHASE FLOW USING LEVEL CONTOUR RECONSTRUCTION METHOD (Level Contour Reconstruction 방법을 이용한 다상유동 수치해석)

  • Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.193-200
    • /
    • 2009
  • Recently, there have been efforts to construct hybrids among the existing methodologies for multiphase flow such as VOF, Level Set, and Front Tracking with the intention of facilitating simulations of general three-dimensional problems. As one of the hybrid method, we have developed the Level Contour Reconstruction Method (LCRM) for general three-dimensional multiphase flows including phase change. The main idea was focused on simplicity and a robust algorithm especially for the three-dimensional case. It combines characteristics of both Front Tracking and Level Set methods. While retaining an explicitly tracked interface using interfacial elements, the calculation of a vector distance function plays a crucial role in the periodic reconstruction of the interface elements in the LCRM method to maintain excellent mass conservation and interface fidelity. In addition, compact curvature formulation is incorporated for the calculation of the surface tension force thereby reducing parasitic currents to a negligible level.

  • PDF

FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW (비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Kang, Chang-Woo
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

MOMENT-OF-FLUID METHOD FOR FREE SURFACE FLOW SIMULATION USING UNSTRUCTURED MESHES (비정렬 격자상에서 Moment-of-Fluid 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.65-67
    • /
    • 2011
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. The MOF method uses moment data, namely the material volume fraction, as well as the centroid, for a more accurate representation of the material configuration, interfaces and concomitant volume advection. In this paper, unstructured mesh extension of the MOF method is to be presented. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two materials. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Numerical Simulation of Solitary Wave Run-up with an Internal Wave-Maker of Navier-Stokes Equations Model (내부조파기법을 활용한 Navier-Stokes 방정식 모형의 고립파 처오름 수치모의)

  • Ha, Tae-Min;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.801-811
    • /
    • 2010
  • A three-dimensional numerical model called NEWTANK is employed to investigate solitary wave run-up with an internal wave-maker on a steep slope. The numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES (large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS (sub-grid scale) closure model. A two-step projection method is adopted in numerical solutions, aided by the Bi-CGSTAB (Bi-Conjugate Gradient Stabilized) method to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF (volume-of-fluid) method is used to track the distorted and broken free surface. A solitary wave is first internally generated and propagated over a constant water depth in the three-dimensional domain. Numerically predicted results are compared with analytical solutions and numerical errors are analyzed in detail. The model is then applied to study solitary wave run-up on a steep slope and the obtained results are compared with available laboratory measurements.

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion (펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구)

  • Garam Ku;Cheolung Cheong;Hanshin Seol;Hongseok Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.250-261
    • /
    • 2023
  • In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

AN EFFICIENT ALGORITHM FOR INCOMPRESSIBLE FREE SURFACE FLOW ON CARTESIAN MESHES (직교격자상에서 효율적인 비압축성 자유표면유동 해법)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.20-28
    • /
    • 2014
  • An efficient solution algorithm for simulating free surface problem is presented. Navier-Stokes equations for variable density incompressible flow are employed as the governing equation on Cartesian meshes. In order to describe the free surface motion efficiently, VOF(Volume Of Fluid) method utilizing THINC(Tangent of Hyperbola for Interface Capturing) scheme is employed. The most time-consuming part of the current free surface flow simulations is the solution step of the linear system, derived by the pressure Poisson equation. To solve a pressure Poisson equation efficiently, the PCG(Preconditioned Conjugate Gradient) method is utilized. This study showed that the proper application of the preconditioner is the key for the efficient solution of the free surface flow when its pressure Poisson equation is solved by the CG method. To demonstrate the efficiency of the current approach, we compared the convergence histories of different algorithms for solving the pressure Poisson equation.