The growth of amorphous silica nanowires by on-site feeding of silicon and oxygen is reported. The nanowires were grown on a nickel-coated oxidized silicon substrate without external silicon or oxygen sources. Transmission electron microscopy observation revealed that the nanowires, which have diameters of less than 50 nm and a length of several micrometers, were grown using a traditional vapor-liquid-solid mechanism. Blue photoluminescence was observed from these nanowires at room temperature. An approach to grow nanowires without external precursors may be useful when integrating nanowires into devices structures. This can benefit the fabrication of nanowire-based nanodevices.
Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.
One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.
We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 ℃ towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 ℃, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.
Amorphous carbon nanotubes were synthesized by a reaction of benzene, ferrocene and Na mixture in a small autoclave at temperatures as low as $400^{\circ}C$. The resulting carbon nanotubes were short and straight, but their inner hole was filled with residual products. The addition of quartz to the reacting mixture considerably promoted the formation of carbon nanotubes. A careful examination of powder structure suggested that the nanotubes in this process were mainly formed by surface diffusion of carbon atoms at the surface of solid catalytic particles, not by VLS(vapor-liquid-solid) mechanism.
$\beta$-SiC whiskers could be formed from a system of mullite-carbon-hydrogen by VLS mechanism at elevated temperatures. It was considered that methane gases were generated from the reaction of hydrogen gases with carbon black, and were reacted with mullite to produce two kinds of gases; silicon suboxide (SiO) and carbon monoxide (CO) of precursors of SiC. With increasing the synthesizing temperature up to 146$0^{\circ}C$, the formation of $\beta$-SiC whisker increased from 0.58 mg/$\textrm{cm}^2$ to 3.98 mg/$\textrm{cm}^2$ on the basis of unit area of carbon block, and the diameters of whiskers had their uniformity due to the reduction in stacking faults.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.291.2-291.2
/
2013
Growth behavior of b-Ga2O3 nanowires (NWs) on sapphire(0001) substrates during radio-frequency magnetron sputtering is reported. Upon fabrication, flat thin films grew initially, subsequent to which, NW bundles were formed on the surface of thin film with increasing film thickness. This transition of the growth mode occurred only at temperatures greater than ${\sim}450^{\circ}C$. The b-Ga2O3 NWs were grown through the self-catalytic vapor-liquid-solid mechanism with self-assembled Ga seeds. Secondary growth of NWs, which occurred from the sides of primary NWs resulting in branched NW structures, was also observed. Finally, the room temperature photoluminescence properties of as-grown and annealed b-Ga2O3 NW samples were investigated.
$In_2O_3$ nanowires were coated with $Co_3O_4$ nanoparticles to investigate the improvement of ethanol gas sensing performance compared with as-synthesized $In_2O_3$ nanowires. Scanning electron microscopy showed that the nanowires synthesized by VLS mechanism had diameters and lengths of approximately 50-100 nm and a few micrometers, respectively. $Co_3O_4$ nanoparticles produced by hydrothermal method was in the size range of a few to a few tens nm. As-synthesized and $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors exhibited responses of 1.96% and 4.57%, respectively for the ethanol gas concentration of 200 ppm at $200^{\circ}C$. The underlying mechanism for the improved responses of $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors is discussed.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.382-382
/
2012
Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.149-149
/
2016
Ceramic is widely known material due to its outstanding mechanical property. Besides, Zirconia(ZrO2) has a low thermal conductivity so it is advantage in a heat insulation. Because of these superior properties, ZrO2 is attracted to many fields using ultra high temperature for example vehicle engines, aerospace industry, turbine, nuclear system and so on. However brittle fracture is a disadvantage of the ZrO2. In order to overcome this problem, we can make the ceramic materials to the forms of ceramic nanoparticles, ceramic nanowhiskers and these forms can be used to an agent of composite materials. In this work, we selected Au catalyzed Vapor-Liquid-Solid mechanism to synthesize ZrO2 nanowhiskers. The ZrO2 whiskers are grown through Hot-wall Chemical Vapor Deposition(Hot wall CVD) using ZrCl4 as a powder source and Au film as a catalyst. This Hot wall CVD method is known to comparatively cost effective. The synthesis condition is a temperature of $1100^{\circ}C$, a pressure of 760torr(1atm) and carrier gas(Ar) flow of 500sccm. To observe the morphology of ZrO2 scanning electron microscopy is used and to identify the crystal structure x-ray diffraction is used.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.