DOI QR코드

DOI QR Code

Synthesis of Carbon Nanotubes by Chemical Method at Warm Temperatures

탄소나노튜브의 중저온에서의 화학적 합성

  • Ahn, Jung-Ho (Andong National University, Dept. of Materials Engineering) ;
  • Lee, Sang-Hyun (Andong National University, Dept. of Materials Engineering) ;
  • Kim, Yong-Jin (Korea institute of Machinery and Materials, Center for Nanopowder Research) ;
  • Chung, Byung-Sik (Ajou University, Dept. of Materials Engineering)
  • 안중호 (안동대학교 신소재공학부) ;
  • 이상현 (안동대학교 신소재공학부) ;
  • 김용진 (한국기계연구원 분말재료연구센터) ;
  • 정형식 (아주대학교 재료공학과)
  • Published : 2006.10.28

Abstract

Amorphous carbon nanotubes were synthesized by a reaction of benzene, ferrocene and Na mixture in a small autoclave at temperatures as low as $400^{\circ}C$. The resulting carbon nanotubes were short and straight, but their inner hole was filled with residual products. The addition of quartz to the reacting mixture considerably promoted the formation of carbon nanotubes. A careful examination of powder structure suggested that the nanotubes in this process were mainly formed by surface diffusion of carbon atoms at the surface of solid catalytic particles, not by VLS(vapor-liquid-solid) mechanism.

Keywords

References

  1. S. Iijima: Nature, 354 (1991) 56 https://doi.org/10.1038/354056a0
  2. D. S. Bethune, G. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez: Nature, 363 (1993) 605 https://doi.org/10.1038/363605a0
  3. M. Jose-Yacamen, M. Miki-Yoshida, L. Rendon and J. G. Santiesteban: Appl Phys Lett. 62 (1993) 657 https://doi.org/10.1063/1.108857
  4. S. Iijima and T. Ichihashi: Nature, 363 (1993) 603 https://doi.org/10.1038/363603a0
  5. B. W. Smith, M. Monthioux and D. E. Luzzi: Nature, 396 (1999) 323
  6. Z.F. Ren, Z. P. Huang, J.W. Xu, J.H. Wang, P. Bush and M.P. Siegal: Science, 282 (1998) 1105 https://doi.org/10.1126/science.282.5391.1105
  7. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler and C. Journet: Science, 290 (2000) 1331 https://doi.org/10.1126/science.290.5495.1331
  8. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai and P. M. Ajayan: Science, 296 (2002) 884 https://doi.org/10.1126/science.1066996
  9. A. Peigney, P. Coquay, E. Flahaut, R.E. Vandenberghe, E. De Grave and C. Laurent : J Phys Chem B, 105 (2001) 9699 https://doi.org/10.1021/jp004586n
  10. C.D. Scott, S. Arepalli, P. Nikolaev and R. E. Smalley:Appl Phys A 72 (2001) 573 https://doi.org/10.1007/s003390100761
  11. Y. Gogotsi, J. A. Libera and M. Yoshimura: J. Mater Res. 15 (2001) 2591
  12. J. M. Calderon-Moreno and M. Yoshimura: J. Am. Chem. Soc. 123 (2001) 741 https://doi.org/10.1021/ja003008h
  13. W. Wang, J. Y. Huang, D. Z. Wang and Z. F. Ren: Carbon, 43 (2005) 1317 https://doi.org/10.1016/j.carbon.2004.12.004
  14. H. Nishino, R. Nishidaa and T. Mochida: Carbon, 41 (2003) 2819 https://doi.org/10.1016/S0008-6223(03)00398-1
  15. R. T. K. Baker and P. S. Harris: The formation of filamentous carbon, P.L.Walker & P.A, Thrower, editors. Chemistry and Physics of Carbon. New York: Marcel Dekker, Inc.; 1978. p. 83-165
  16. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao and E. C. Dickey: Chem Phys Lett., 315 (1999) 25 https://doi.org/10.1016/S0009-2614(99)01216-6
  17. Y. Saito Y: Carbon, 33 (1995) 979 https://doi.org/10.1016/0008-6223(95)00026-A
  18. A. Psersson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson and L. R. Wallsenberg: Nature Materials, 3 (2004) 677 https://doi.org/10.1038/nmat1220
  19. R.L. van der Wal, T. M. Thomas, M. Ticich and V. E. Curtis: Carbon, 39 (2001) 2277 https://doi.org/10.1016/S0008-6223(01)00047-1