• Title/Summary/Keyword: VIVO

Search Result 8,120, Processing Time 0.032 seconds

A Rapid and Convenient Method for in Vivo Fluorescent Imaging of Protoscolices of Echinococcus multilocularis

  • Yang, Tao;Wang, Sibo;Zhang, Xuyong;Xia, Jie;Guo, Jun;Hou, Jixue;Zhang, Hongwei;Chen, Xueling;Wu, Xiangwei
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.225-231
    • /
    • 2016
  • Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.

In vivo tracking of adipose tissue grafts with cadmium-telluride quantum dots

  • Deglmann, Claus J.;Blazkow-Schmalzbauer, Katarzyna;Moorkamp, Sarah;Wallmichrath, Jens;Giunta, Riccardo E.;Rogach, Andrey L.;Wagner, Ernst;Baumeister, Ruediger G.;Ogris, Manfred
    • Archives of Plastic Surgery
    • /
    • v.45 no.2
    • /
    • pp.111-117
    • /
    • 2018
  • Background Fat grafting, or lipofilling, represent frequent clinically used entities. The fate of these transplants is still not predictable, whereas only few animal models are available for further research. Quantum dots (QDs) are semiconductor nanocrystals which can be conveniently tracked in vivo due to photoluminescence. Methods Fat grafts in cluster form were labeled with cadmium-telluride (CdTe)-QD 770 and transplanted subcutaneously in a murine in vivo model. Photoluminescence levels were serially followed in vivo. Results Tracing of fat grafts was possible for 50 days with CdTe-QD 770. The remaining photoluminescence was $4.9%{\pm}2.5%$ for the QDs marked fat grafts after 30 days and $4.2%{\pm}1.7%$ after 50 days. There was no significant correlation in the relative course of the tracking signal, when vital fat transplants were compared to non-vital graft controls. Conclusions For the first-time fat grafts were tracked in vivo with CdTe-QDs. CdTe-QDs could offer a new option for in vivo tracking of fat grafts for at least 50 days, but do not document vitality of the grafts.

Fluorescence Detection of Cell Death in Liver of Mice Treated with Thioacetamide

  • Kang, Jin Seok
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The purpose of this study was to detect cell death in the liver of mice treated with thioacetamide (TAA) using fluorescence bioimaging and compare this outcome with that using conventional histopathological examination. At 6 weeks of age, 24 mice were randomly divided into three groups: group 1 (G1), control group; group 2 (G2), fluorescence probe control group; group 3 (G3), TAA-treated group. G3 mice were treated with TAA. Twenty-two hours after TAA treatment, G2 and G3 mice were treated with Annexin-Vivo 750. Fluorescence in vivo bioimaging was performed by fluorescence molecular tomography at two hours after Annexin-Vivo 750 treatment, and fluorescence ex vivo bioimaging of the liver was performed. Liver damage was validated by histopathological examination. In vivo bioimaging showed that the fluorescence intensity was increased in the right upper part of G3 mice compared with that in G2 mice, whereas G1 mice showed no signal. Additionally ex vivo bioimaging showed that the fluorescence intensity was significantly increased in the livers of G3 mice compared with those in G1 or G2 mice (p < 0.05). Histopathological examination of the liver showed no cell death in G1 and G2 mice. However, in G3 mice, there was destruction of hepatocytes and increased cell death. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining confirmed many cell death features in the liver of G3 mice, whereas no pathological findings were observed in the liver of G1 and G2 mice. Taken together, fluorescence bioimaging in this study showed the detection of cell death and made it possible to quantify the level of cell death in male mice. The outcome was correlated with conventional biomedical examination. As it was difficult to differentiate histological location by fluorescent bioimaging, it is necessary to develop specific fluorescent dyes for monitoring hepatic disease progression and to exploit new bioimaging techniques without dye-labeling.

DIFFERENCE IN DYE PENETRATION INTO DENTINAL TUBULES IN VIVO AND IN VITRO (In vivo와 in vitro에서 상아세관을 통한 색소침투의 차이)

  • Jang, In-Ho;Kim, Myung-Su;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.242-253
    • /
    • 1996
  • Penetration degree of several dyes into dentinal tubules in vivo was compared with in vitro, and experimental sensitivity of those dyes was investigated in 64 canines of 16 cats. Dentin 1mm below cusp tip was exposed by cross-sectioning with diamond disc. Pulp of 32 canines were extirpated through cervical cavities. In the presence of smear layer or after add-etching with 37% phosphoric acid to the exposed dentin surface, acrylic collar and resin cap was attached to keep dyes. 52 mmol/$\ell$ Evans' blue, 2% Methylene blue, 10 % Silver nitrate and 5% Fluorescene were then applicated on each 4 canines respectively for 30 minutes. After rinsing, the canines were ground-sectioned longitudinally and linear dye penetration was measured under microscope. The results obtained were as follows ; 1. Evans' blue and Methylene blue penetrated significantly(P<0.05) more in vitro than in vivo only in the cases that exposed dentin surfaces were not etched with acid. 2. Silver nitrate penetrated significantly(P<0.05) more in vitro than in vivo in both cases that exposed dentin surfaces remained intact and were etched with acid. 3. The penetration degree of Fluorescene did not show statistical significance between in vivo and in vitro or in acid-etched and in not acid-etched cases.

  • PDF

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-

  • Bendale, Yogesh;Bendale, Vineeta;Natu, Rammesh;Paul, Saili
    • Journal of Pharmacopuncture
    • /
    • v.19 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached $70-75mm^3$, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer.

Identification of Actinobacillus pleuropneumoniae Genes Preferentially Expressed During Infection Using In Vivo-Induced Antigen Technology (IVIAT)

  • Zhang, Fei;Zhang, Yangyi;Wen, Xintian;Huang, Xiaobo;Wen, Yiping;Wu, Rui;Yan, Qigui;Huang, Yong;Ma, Xiaoping;Zhao, Qin;Cao, Sanjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1606-1613
    • /
    • 2015
  • Porcine pleuropneumonia is an infectious disease caused by Actinobacillus pleuropneumoniae. The identification of A. pleuropneumoniae genes, specially expressed in vivo, is a useful tool to reveal the mechanism of infection. IVIAT was used in this work to identify antigens expressed in vivo during A. pleuropneumoniae infection, using sera from individuals with chronic porcine pleuropneumonia. Sequencing of DNA inserts from positive clones showed 11 open reading frames with high homology to A. pleuropneumoniae genes. Based on sequence analysis, proteins encoded by these genes were involved in metabolism, replication, transcription regulation, and signal transduction. Moreover, three function-unknown proteins were also indentified in this work. Expression analysis using quantitative real-time PCR showed that most of the genes tested were up-regulated in vivo relative to their expression levels in vitro. IVI (in vivo-induced) genes that were amplified by PCR in different A. pleuropneumoniae strains showed that these genes could be detected in almost all of the strains. It is demonstrated that the identified IVI antigen may have important roles in the infection of A. pleuropneumoniae.

Calcium Absorption Accelerating Effect of Chitosnn Oligosaccharides prepared by Ultrafiltration Membrane Enzymatic Reactor (한외여과막 효소반응기를 이용하여 제조한 키토산 올리고당의 칼슘흡수 촉진효과)

  • JEON You-Jin;KIM Gyu-Hyung;PARK Pyo-Jam;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.247-251
    • /
    • 1999
  • In spite of various bio-functionalities of chitosan, the effects in vivo were still ambiguous because of its low absorption on organism. Therefore, chitosan oligosaccharides (COSs) are necessary to elucidate for an efficient utilization in vivo. COSs were prepared from chitosan using ultrafiltration membrane enzymatic reactor system with MWCO (molecular weight cut-off) 3,000 Da of membrane. Calcium absorption accelerating effect using COSs was examined by two methods, in vitro and in vivo. In vitro experiment, calcium absorption by the addition of COSs in a mixture solution of calcium and phosphate was higher approximately $50\%$ than that by control. In vivo using rats, group taken the diet contained $1\%$ COSs anil calcium chloride decreased about $75\%$ of calcium content excreted from feces, and then, showed about $15\%$ increase in breaking force of femur. These results demonstrated that COSs definitely involved in calcium metabolism in vivo.

  • PDF

Improvement of in vitro Sun Protection Factor Measurement (In vitro SPF 측정법 개선에 관한 연구)

  • 안성연;배지현;이해광;문성준;장이섭
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.129-133
    • /
    • 2004
  • The major advantage of the in vitro test is that it is a rapid, objective and cost-effective screening methodology. In vitro tests can provide a formulation tool to identify new fillers that are optimized by combinations of old ones and they can be used to pre-screen protective formulas prior to in vivo testing in humans. Therefore, the accuracy of in vitro SPF measurement is very important. In this study, improvement of application method of samples was tried to improve the accuracy of in vitro SPF measurement. The outer part of Transpore$\^$(R)/ tape was used to apply samples as the substrates and the standard drying time was set at 15 min. The new method, topical applications at light scan areas, results in more accurate and reliable results. This result suggests that more accurate prediction system can be established for in vivo SPF with in vivo SPF measurement.

Fermentation-Mediated Enhancement of Ginseng's Anti-Allergic Activity against IgE-Mediated Passive Cutaneous Anaphylaxis In Vivo and In Vitro

  • Hwang, Seon-Weon;Sun, Xiao;Han, Jun-Hyuk;Kim, Tae-Yeon;Koppula, Sushruta;Kang, Tae-Bong;Hwang, Jae-Kwan;Lee, Kwang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1626-1634
    • /
    • 2018
  • Ginseng (the root of Panax ginseng Meyer) fermented by Lactobacillus plantarum has been found to attenuate allergic responses in in vitro and in vivo experimental models. Ginseng has been reported to also possess various biological functions including anti-inflammatory activity. The present study was aimed at comparing the anti-allergic effect of ginseng and fermented ginseng extracts on IgE-mediated passive cutaneous anaphylaxis in vitro in a murine cell line and in vivo in mice. Fermented ginseng extract (FPG) showed higher inhibitory effect against in vitro and in vivo allergic responses when compared with ginseng extract (PG). The secretion of ${\beta}$-hexosaminidase and interleukin (IL)-4 from the IgE-DNP-stimulated RBH-2H3 mast cells were significantly (p < 0.05) inhibited by FPG treatment, and this effect was concentration-dependent. Further, MKK4 activation and subsequent JNK phosphorylation were attenuated by FPG treatment. The inhibitory effect of FPG on the in vitro allergic response was verified in vivo against IgE-DNP-induced passive cutaneous anaphylaxis in a mouse model. These data indicated that the fermentation of ginseng with L. plantarum enhanced its anti-allergic effects both in vitro and in vivo. We predict that compositional changes in the ginsenosides caused by the fermentation may contribute to the change in the anti-allergic effects of ginseng. The results of our study highlight the potential of the use of FPG as a potential anti-allergic agent.