• 제목/요약/키워드: VGG16 models

검색결과 42건 처리시간 0.023초

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.

Waste Classification by Fine-Tuning Pre-trained CNN and GAN

  • Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.65-70
    • /
    • 2021
  • Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.

다양한 합성곱 신경망 방식을 이용한 모바일 기기를 위한 시작 단어 검출의 성능 비교 (Performance comparison of wake-up-word detection on mobile devices using various convolutional neural networks)

  • 김상홍;이보원
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.454-460
    • /
    • 2020
  • 음성인식 기능을 제공하는 인공지능 비서들은 정확도가 뛰어난 클라우드 기반의 음성인식을 통해 동작한다. 클라우드 기반의 음성인식에서 시작 단어 인식은 대기 중인 기기를 활성화하는 데 중요한 역할을 한다. 본 논문에서는 공개 데이터셋인 구글의 Speech Commands 데이터셋을 사용하여 스펙트로그램 및 멜-주파수 캡스트럼 계수 특징을 입력으로 하여 모바일 기기에 대응한 저 연산 시작 단어 검출을 위한 합성곱 신경망의 성능을 비교한다. 본 논문에서 사용한 합성곱 신경망은 다층 퍼셉트론, 일반적인 합성곱 신경망, VGG16, VGG19, ResNet50, ResNet101, ResNet152, MobileNet이며, MobileNet의 성능을 유지하면서 모델 크기를 1/25로 줄인 네트워크도 제안한다.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Comparison of Fine-Tuned Convolutional Neural Networks for Clipart Style Classification

  • Lee, Seungbin;Kim, Hyungon;Seok, Hyekyoung;Nang, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2017
  • Clipart is artificial visual contents that are created using various tools such as Illustrator to highlight some information. Here, the style of the clipart plays a critical role in determining how it looks. However, previous studies on clipart are focused only on the object recognition [16], segmentation, and retrieval of clipart images using hand-craft image features. Recently, some clipart classification researches based on the style similarity using CNN have been proposed, however, they have used different CNN-models and experimented with different benchmark dataset so that it is very hard to compare their performances. This paper presents an experimental analysis of the clipart classification based on the style similarity with two well-known CNN-models (Inception Resnet V2 [13] and VGG-16 [14] and transfers learning with the same benchmark dataset (Microsoft Style Dataset 3.6K). From this experiment, we find out that the accuracy of Inception Resnet V2 is better than VGG for clipart style classification because of its deep nature and convolution map with various sizes in parallel. We also find out that the end-to-end training can improve the accuracy more than 20% in both CNN models.

자율주행 선박의 적대적 공격에 대한 신경망 모델의 성능 비교 (Performance Comparison of Neural Network Models for Adversarial Attacks by Autonomous Ships)

  • 허태훈;김주형;김나현;김소연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1106-1107
    • /
    • 2023
  • 자율주행 선박의 기술 발전에 따라 적대적 공격에 대한 위험성이 대두되고 있다. 이를 해결하기 위해 본 연구는 다양한 신경망 모델을 활용하여 적대적 공격을 탐지하는 성능을 체계적으로 비교, 분석하였다. CNN, GRU, LSTM, VGG16 모델을 사용하여 실험을 진행하였고, 이 중 VGG16 모델이 가장 높은 탐지 성능을 보였다. 본 연구의 결과를 통해 자율주행 선박에 적용될 수 있는 보안모델 구축에 대한 신뢰성 있는 방향성을 제시하고자 한다.

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Do, Thanh-Nghi;Le, Van-Thanh;Doan, Thi-Huong
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

A Defect Detection Algorithm of Denim Fabric Based on Cascading Feature Extraction Architecture

  • Shuangbao, Ma;Renchao, Zhang;Yujie, Dong;Yuhui, Feng;Guoqin, Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.109-117
    • /
    • 2023
  • Defect detection is one of the key factors in fabric quality control. To improve the speed and accuracy of denim fabric defect detection, this paper proposes a defect detection algorithm based on cascading feature extraction architecture. Firstly, this paper extracts these weight parameters of the pre-trained VGG16 model on the large dataset ImageNet and uses its portability to train the defect detection classifier and the defect recognition classifier respectively. Secondly, retraining and adjusting partial weight parameters of the convolution layer were retrained and adjusted from of these two training models on the high-definition fabric defect dataset. The last step is merging these two models to get the defect detection algorithm based on cascading architecture. Then there are two comparative experiments between this improved defect detection algorithm and other feature extraction methods, such as VGG16, ResNet-50, and Xception. The results of experiments show that the defect detection accuracy of this defect detection algorithm can reach 94.3% and the speed is also increased by 1-3 percentage points.

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

비디오 인코더를 통한 딥러닝 모델의 정수 가중치 압축 (Compression of DNN Integer Weight using Video Encoder)

  • 김승환;류은석
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.778-789
    • /
    • 2021
  • 최근 다양한 분야에서 뛰어난 성능을 나타내는 Convolutional Neural Network(CNN)모델을 모바일 기기에서 사용하기 위한 다양한 연구가 진행되고 있다. 기존의 CNN 모델은 모바일 장비에서 사용하기에는 가중치의 크기가 크고 연산복잡도가 높다는 문제점이 있다. 이를 해결하기 위해 가중치의 표현 비트를 낮추는 가중치 양자화를 포함한 여러 경량화 방법들이 등장하였다. 많은 방법들이 다양한 모델에서 적은 정확도 손실과 높은 압축률을 나타냈지만, 대부분의 압축 모델들은 정확도 손실을 복구하기 위한 재학습 과정을 포함시켰다. 재학습 과정은 압축된 모델의 정확도 손실을 최소화하지만 많은 시간과 데이터를 필요로 하는 작업이다. Weight Quantization이후 각 층의 가중치는 정수형 행렬로 나타나는데 이는 이미지의 형태와 유사하다. 본 논문에서는 Weight Quantization이후 각 층의 정수 가중치 행렬을 이미지의 형태로 비디오 코덱을 사용하여 압축하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 ImageNet과 Places365 데이터 셋으로 학습된 VGG16, Resnet50, Resnet18모델에 실험을 진행하였다. 그 결과 다양한 모델에서 2%이하의 정확도 손실과 높은 압축 효율을 달성했다. 또한, 재학습 과정을 제외한 압축방법인 No Fine-tuning Pruning(NFP)와 ThiNet과의 성능비교 결과 2배 이상의 압축효율이 있음을 검증했다.