본 연구는 무대재배 복숭아 '미황'을 대상으로 성숙기간 중 RGB 영상을 취득한 후 다양한 품질 지표를 측정하고 이를 딥러닝 기술에 적용하여 복숭아 과실 숙도 분류의 가능성을 탐색하고자 실시하였다. 취득 영상 730개의 데이터를 training과 validation에 사용하였고, 170개는 최종테스트 이미지로 사용하였다. 본 연구에서는 딥러닝을 활용한 성숙도 자동 분류를 위하여 조사된 품질 지표 중 경도, Hue 값, a*값을 최종 선발하여 이미지를 수동으로 미성숙(immature), 성숙(mature), 과숙(over mature)으로 분류하였다. 이미지 자동 분류는 CNN(Convolutional Neural Networks, 컨볼루션 신경망) 모델 중에서 이미지 분류 및 탐지에서 우수한 성능을 보이고 있는 VGG16, GoogLeNet의 InceptionV3 두종류의 모델을 사용하여 복숭아 품질 지표 값의 분류 이미지별 성능을 측정하였다. 딥러닝을 통한 성숙도 이미지 분석 결과, VGG16과 InceptionV3 모델에서 Hue_left 특성이 각각 87.1%, 83.6%의 성능(F1 기준)을 나타냈고, 그에 비해 Firmness 특성이 각각 72.2%, 76.9%를 나타냈고, Loss율이 각각 54.3%, 62.1%로 Firmness를 기준으로 한 성숙도 분류는 적용성이 낮음을 확인하였다. 추후에 더 많은 종류의 이미지와 다양한 품질 지표를 가지고 학습이 진행된다면 이전 연구보다 향상된 정확도와 세밀한 성숙도 판별이 가능할 것으로 판단되었다.
최근 전장에서의 드론 활용이 정찰뿐만 아니라 화력 지원까지 확장됨에 따라, 드론을 조기에 자동으로 식별하는 기술의 중요성이 더욱 증가하고 있다. 본 연구에서는 드론과 크기 및 외형이 유사한 다른 공중 표적들인 새와 풍선을 구분할 수 있는 효과적인 이미지 분류 모델을 확인하기 위해, 인터넷에서 수집한 3,600장의 이미지 데이터셋을 사용하고, 세 가지 사전 학습된 합성곱 신경망 모델(VGG16, ResNet50, InceptionV3)의 특징 추출기능과 추가 분류기를 결합한 전이 학습 접근 방식을 채택하였다. 즉, 가장 우수한 모델을 확인하기 위해 세 가지 사전 학습된 모델(VGG16, ResNet50, InceptionV3)의 성능을 비교 분석하였으며, 실험 결과 InceptionV3 모델이 99.66%의 최고 정확도를 나타냄을 확인하였다. 본 연구는 기존의 합성곱 신경망 모델과 전이 학습을 활용하여 드론을 식별하는 새로운 시도로써, 드론 식별 기술의 발전에 크게 기여 할 것으로 기대된다.
Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
Wind and Structures
/
제34권6호
/
pp.511-523
/
2022
Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.
이 연구에서는 Inception V3, SqueezeNet(local), VGG-16, Painters 및 DeepLoc의 다섯 가지 인공지능(AI) 모델을 사용하여 차나무 잎의 병해를 분류하였다. 여덟 가지 이미지 카테고리를 사용하였는데, healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot였다. 이 연구에서 사용한 소프트웨어는 데이터 시각적 프로그래밍을 위한 파이썬 라이브러리로 작동하는 Orange3였다. 이는 데이터를 시각적으로 조작하여 분석하기 위한 워크플로를 생성하는 인터페이스를 통해 작동되었다. 각 AI 모델의 정확도로 최적의 AI 모델을 선택하였다. 모든 모델은 Adam 최적화, ReLU 활성화 함수, 은닉 레이어에 100개의 뉴런, 신경망의 최대 반복 횟수가 200회, 그리고 0.0001 정규화를 사용하여 훈련되었다. Orange3 기능을 확장하기 위해 새로운 이미지 분석 Add-on을 설치하였다. 훈련 모델에서는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 신경망(neural network), 테스트 및 점수(test and score), 혼동 행렬(confusion matrix) 위젯이 사용되었으며, 예측에는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 예측(prediction) 및 이미지 뷰어(image viewer) 위젯이 사용되었다. 다섯 AI 모델[Inception V3, SqueezeNet(로컬), VGG-16, Painters 및 DeepLoc]의 신경망 정밀도는 각각 0.807, 0.901, 0.780, 0.800 및 0.771이었다. 결론적으로 SqueezeNet(local) 모델이 차나무 잎 이미지를 사용하여 차병해 탐색을 위한 최적 AI 모델로 선택되었으며, 정확도와 혼동 행렬을 통해 뛰어난 성능을 보였다.
GPR을 활용한 싱크홀 감지 정확도 강화를 위하여 본 연구에서는 GPR B-scan 회색조 이미지의 싱크홀 특성을 최적으로 추출할 수 있는 컨볼루션 신경망을 도출하였다. 사전 훈련된 컨볼루션 신경망이 바닐라 컨볼루션 신경망보다 2배 이상의 효용성을 가지는 것으로 평가되었다. 사전 훈련된 컨볼루션 신경망에 있어서 빠른 특성 추출이 특성 추출보다 낮은 과대적합을 발생시키는 것으로 나타났다. 아키텍처 종류와 시뮬레이션 조건에 따라 top-1 검증 정확도 크기와 발생 조건 및 연산 시간이 상이한 것으로 분석되어, 사전 훈련된 컨볼루션 신경망 중 InceptionV3가 GPR B-scan 회색조 이미지의 싱크홀 감지에 가장 강건한 것으로 평가되었다. Top-1 검증 정확도와 아키텍처 효율 지수를 동시에 고려할 경우 VGG19와 VGG16가 GPR B-scan 회색조 이미지의 싱크홀 특성 추출 백본으로 높은 효율성을 가지는 것으로 분석되었으며, GPR 장비에 탑재하여 실시간으로 싱크홀 특성 추출을 할 경우에는 MobileNetV3-Large 백본이 적합한 것으로 나타났다.
Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
International Journal of Computer Science & Network Security
/
제21권8호
/
pp.65-70
/
2021
Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.
International Journal of Internet, Broadcasting and Communication
/
제9권4호
/
pp.1-7
/
2017
Clipart is artificial visual contents that are created using various tools such as Illustrator to highlight some information. Here, the style of the clipart plays a critical role in determining how it looks. However, previous studies on clipart are focused only on the object recognition [16], segmentation, and retrieval of clipart images using hand-craft image features. Recently, some clipart classification researches based on the style similarity using CNN have been proposed, however, they have used different CNN-models and experimented with different benchmark dataset so that it is very hard to compare their performances. This paper presents an experimental analysis of the clipart classification based on the style similarity with two well-known CNN-models (Inception Resnet V2 [13] and VGG-16 [14] and transfers learning with the same benchmark dataset (Microsoft Style Dataset 3.6K). From this experiment, we find out that the accuracy of Inception Resnet V2 is better than VGG for clipart style classification because of its deep nature and convolution map with various sizes in parallel. We also find out that the end-to-end training can improve the accuracy more than 20% in both CNN models.
Syed Rehan Shah;Syed Muhammad Waqas Shah;Hadia Bibi;Mirza Murad Baig
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.211-221
/
2024
Pakistan is a top producer and exporter of high-quality rice, but traditional methods are still being used for detecting rice diseases. This research project developed an automated rice blast disease diagnosis technique based on deep learning, image processing, and transfer learning with pre-trained models such as Inception V3, VGG16, VGG19, and ResNet50. The modified connection skipping ResNet 50 had the highest accuracy of 99.16%, while the other models achieved 98.16%, 98.47%, and 98.56%, respectively. In addition, CNN and an ensemble model K-nearest neighbor were explored for disease prediction, and the study demonstrated superior performance and disease prediction using recommended web-app approaches.
Oral cancer is a type of cancer that has a high possibility to be cured if it is threatened earlier. The convolutional neural network is very popular for being a good algorithm for image recognition. In this research, we try to compare 4 different architectures of the CNN algorithm: Convnet, VGG16, Inception V3, and Resnet. As we compared those 4 architectures we found that VGG16 and Resnet model has better performance with an 85.35% accuracy rate compared to the other 3 architectures. In the future, we are sure that image recognition can be more developed to identify oral cancer earlier.
공연예술 기관에서의 공연에 대한 흥행 예측은 공연예술 산업 및 기관에서 매우 흥미롭고도 중요한 문제이다. 이를 위해 출연진, 공연장소, 가격 등 정형화된 데이터를 활용한 전통적인 예측방법론, 데이터마이닝 방법론이 제시되어 왔다. 그런데 관객들은 공연안내 포스터에 의하여 관람 의도가 소구되는 경향이 있음에도 불구하고, 포스터 이미지 분석을 통한 흥행 예측은 거의 시도되지 않았다. 그러나 최근 이미지를 통해 판별하는 CNN 계열의 딥러닝 방법이 개발되면서 포스터 분석의 가능성이 열렸다. 이에 본 연구의 목적은 공연 관련 포스터 이미지를 통해 흥행을 예측할 수 있는 딥러닝 방법을 제안하는 것이다. 이를 위해 KOPIS 공연예술 통합전산망에 공개된 포스터 이미지를 학습데이터로 하여 Pure CNN, VGG-16, Inception-v3, ResNet50 등 딥러닝 알고리즘을 통해 예측을 수행하였다. 또한 공연 관련 정형데이터를 활용한 전통적 회귀분석 방법론과의 앙상블을 시도하였다. 그 결과 흥행 예측 정확도 85%를 상회하는 높은 판별 성과를 보였다. 본 연구는 공연예술 분야에서 이미지 정보를 활용하여 흥행을 예측하는 첫 시도이며 본 연구에서 제안한 방법은 연극 외에 영화, 기관 홍보, 기업 제품 광고 등 포스터 기반의 광고를 하는 영역으로도 적용이 가능할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.