• 제목/요약/키워드: VEGFR-2

검색결과 93건 처리시간 0.022초

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

동백잎 추출물의 신생혈관 및 세포부착 억제작용과 그 기전 (Anti-angiogenic and Anti-cell Adhesion Effects and Their Mechanism with the Extract of Camellia japonica Leaf)

  • 송민규;서효진;문제학;박근형;김종덕
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.249-254
    • /
    • 2007
  • 동백잎의 열수 추출물이 신생혈관 생성억제 효과가 강하게 나타남으로써 이들 추출물에 대한 독성 시험을 HUVECs를 사용하여 검토한 바는 200 ug/mL에서도 독성이 없는 것으로 나타났으며, 1.5, 3.0, 15 및 30 ug/mL으로 농도가 증가함에 따라 각각 30.7%, 38.5%, 53.8% 그리고 70.0%의 신생혈관 생성억제율을 보였다. 세포부착 저해효과는 C. japonica leaf (CJL)의 농도가 50, 100, $200{\mu}g{/well}$으로 증가할 때 E-selectin이 46.7%, 66.7% 그리고 86.76%, VCAM-1이 23.0%, 61.5% 그리고 84.6%, ICAM-1이 11.0%, 55.5% 그리고 88.8%로 나타났다. C. japonica leaf (CJL)의 성분 증가에 따라 발현이 감소되는 것을 보아 농도가 증가함에 따라 cell adhesion의 저해 효과가 높아짐을 알 수 있었다. 신호전달의 기전규명은 western blot으로 행하였으며 CJL의 농도가 증가함에 따라 밴드의 발현이 약해지는 것을 관찰할 수 있다. 따라서 신호전달 분자인 VEGFR-2, $\beta$-catenin, Pl3-K는 CJL에 의해 신호전달이 차단되는 것을 볼 수 있고, 이는 NF-${\kappa}$B를 억제함으로서 신생혈관 생성을 저해하는 것으로 확인되었다. 따라서 동백잎은 신생혈관 생성에 의존하고 있는 것으로 알려진 암 등의 치료와 암전이의 억제, 류마치스성 관절염, 그리고 항비만제제로서 개발될 수 있음을 시사한다.

Immunohistochemical Expression of Receptor Tyrosine Kinase (RTK) in Canine Brain Tumors

  • Jung, Hae-Won;Song, Joong-Hyun;Yu, Do-Hyeon;An, Su-Jin;Sur, Jung-Hyang;Kim, Young Joo;Han, Donghyun;Jung, Dong-In
    • 한국임상수의학회지
    • /
    • 제36권6호
    • /
    • pp.319-324
    • /
    • 2019
  • Receptor tyrosine kinases (RTK) are major promising targets in anticancer therapy in human and veterinary medicine. Using immunohistochemistry method, we evaluated the expressionof five types RTK (PDGFR-α, PDGFR-β, VEGFR 2, c-Kit and Abl) in the six canine brain tumor samples (2 meningioma, 2 astrocytoma, 1 ependymoma and 1 choroid plexus papilloma). A total of five samples expressed PDGFR-β (5/6), one sample, the choroid plexus papilloma, expressed c-Kit (1/6), and a total of two samples expressed Abl (2/6). None of the samples showed expression of PDGFR-α and VEGFR 2. We demonstrate that a significant portion of canine brain tumors express tyrosine receptors for growth factors and show that these receptors generally localize to tumor cell membranes and the cytoplasm. Evaluation of immunohistochemical expression for the RTKs PDGFR-β, c-Kit, and Alb in canine brain samples reveals an interesting potential for molecular targeting by TKIs in therapeutic studies of canine brain tumors, and more studies will be needed to assess the interactions and efficacy of these RTKs and TKIs. Based on these results, we have some evidence for novel chemotherapeutic trials using TKIs for canine nervous tumors.

Exploratory Analysis of Patients With Gastric/Gastroesophageal Junction Adenocarcinoma With or Without Liver Metastasis From the Phase 3 RAINBOW Study

  • Takatsugu Ogata;Yukiya Narita;Zev A. Wainberg;Eric Van Cutsem;Kensei Yamaguchi;Yongzhe Piao;Yumin Zhao;Patrick M. Peterson;Sameera R. Wijayawardana;Paolo Abada;Anindya Chatterjee;Kei Muro
    • Journal of Gastric Cancer
    • /
    • 제23권2호
    • /
    • pp.289-302
    • /
    • 2023
  • Purpose: Liver metastasis (LM) is reported in approximately 40% of patients with advanced/metastatic gastric/gastroesophageal junction adenocarcinoma (metastatic esophagogastric adenocarcinoma; mGEA) and is associated with a worse prognosis. This post-hoc analysis from the RAINBOW trial reported the efficacy, safety, and biomarker outcomes of ramucirumab and paclitaxel combination treatment (RAM+PAC) in patients with (LM+) and without (LM-) LM at baseline. Materials and Methods: Patients (n=665) were randomly assigned on a 1:1 basis to receive either RAM+PAC (LM+: 150, LM-: 180) or placebo and paclitaxel (PL+PAC) (LM+: 138, LM-: 197). The overall survival (OS) and progression-free survival (PFS) were evaluated using stratified Kaplan-Meier and Cox regression models. The correlation of dichotomized biomarkers (VEGF-C, D; VEGFR-1,2) with efficacy in the LM+ versus LM- subgroups was analyzed using the Cox regression model with reported interaction P-values. Results: The presence of LM was associated with earlier progression than those without LM, particularly in patients receiving PL+PAC (hazard ratio [HR], 1.68). RAM+PAC treatment improved OS and PFS irrespective of LM status but showed greater improvement in LM+ than that in LM- (OS HR, 0.71 [LM+] vs. 0.88 [LM-]; PFS HR, 0.47 [LM+] vs. 0.76 [LM-]). Treatment-emergent adverse events were similar between patients with and without LM. No predictive relationship was observed between biomarker levels (VEGF-C, D; VEGFR-1,2) and efficacy outcome (OS, PFS) (all interaction P-values >0.05). Conclusions: RAM provided a significant benefit, irrespective of LM status; however, its effect was numerically stronger in patients with LM. Therefore, RAM+PAC is a clinically meaningful therapeutic option for patients with mGEA and LM.

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee;Ga-Hyun Lim;Ju-Hyun An;Su-Min Park;Kyoung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.1.1-1.15
    • /
    • 2024
  • Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.

하악골 신장술 후 신생 골막조직에서의 혈관내피세포성장인자 및 혈관내피세포성장인자 수용체 발현에 대한 연구 (EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND ITS RECEPTORS IN THE DISTRACTED PERIOSTEUM AFTER MANDIBULAR DISTRACTION OSTEOGENESIS)

  • 황등욱;변준호;박봉욱;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.549-558
    • /
    • 2006
  • During distraction osteogenesis, the angiogenic activity is crucial factor in the new bone formation. The aim of this study was to detect the autocrine growth activity in the cellular components of the distracted periosteum with observation of the expression of vascular endothelial growth factor (VEGF) and its receptors following the mandibular distraction osteogenesis. Unilateral mandibular distraction (0.5 mm twice per day for 10 days) was performed in six mongrel dogs. Two animals were sacrificed at 7, 14, and 28 days after completion of distraction, respectively. The distracted lingual periosteum was harvested and processed for immunohistochemical examinations. After then, we observed the expression of VEGF, Flt-1 (VEGFR-1), and Flk-1 (VEGFR-2) in the osteoblasts and immature mesenchymal cells of the distracted periosteum. At 7 days after distraction, the expression of VEGF and its receptors were significantly increased in the cellular components of the distracted periosteum. Up to 14 days following distraction, the increased expressions were maintained in the osteoblastic cells. At 28 days after distraction, the expression of VEGF and its receptors decreased, but VEGF was still expressed weak or moderate in the osteoblastic cells of distracted periosteum. The expression pattern of VEGF and its receptors shown here suggested that VEGF play an important role in the osteogenesis, and these osteoblastic cell-derived VEGF might act as autocrine growth factor during distraction osteogenesis. In the other word, the cellular components in the distracted periosteum, such as osteoblasts and immature mesenchymal cells, might have autocrine growth activity during distraction osteogenesis.

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity

  • SO-YUN CHOO;SOO-HYUN YOON;DONG-JIN LEE;SUN HEE LEE;KANG LI;IN HYE KOO;WOOIN LEE;SUK-CHUL BAE;YOU MIE LEE
    • International Journal of Oncology
    • /
    • 제54권4호
    • /
    • pp.1327-1336
    • /
    • 2019
  • Endothelial progenitor cells (EPCs) are bone marrow (BM)-derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt-related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM-derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/-) or wild-type (WT) mice. The differentiation of EPCs from the BM-derived HSCs of Rx3+/- mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony-forming units. The migration and tube formation abilities of Rx3+/- EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/- mice. Hypoxia-inducible factor (HIF)-1α was upregulated in Rx3+/- EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/- mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/- mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/- mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF-1α activity.

RK-270D and E, Oxindole Derivatives from Streptomyces sp. with Anti-Angiogenic Activity

  • Jang, Jun-Pil;Jang, Mina;Nogawa, Toshihiko;Takahashi, Shunji;Osada, Hiroyuki;Ahn, Jong Seog;Ko, Sung-Kyun;Jang, Jae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.302-306
    • /
    • 2022
  • A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.