• Title/Summary/Keyword: VEGF inhibitors

Search Result 27, Processing Time 0.027 seconds

The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis

  • You, Weon-Kyoo;McDonald, Donald M.
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.833-839
    • /
    • 2008
  • Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.

Development of Evaluating Ways for the Efficacy of Anti-VEGF Biopharmaceuticals (VEGF 제어의약품의 효능 평가법 개발)

  • Nam, Eun-Hee;Jeon, Seong-Hyun;Lee, Wha-Jung;Seo, Dong-Wan;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.203-208
    • /
    • 2007
  • Background: Angiogenesis mediated by VEGF constitutes a new target for anti-cancer therapy which has explored through different ways of intervention aiming at the blocking of the tumoral angiogenesis. In the present study, we developed the assays by which efficacies of anti-VEGF inhibitor candidates are evaluated at the various levels. Methods & Results: First, we developed two sandwich ELISAs using coated anti-VEGF Ab and soluble Flt-1 receptor fusion protein (sFlt-1/Fc). As low as 200 pg/ml of hVEGF diluted in human sera was detectable by these assays. In addition, we found that VEGF inhibitors ($2{\mu}g/ml$ of either anti-VEGF Ab or sFlt-1/Fc) completely block 5 ng/ml VEGF in these ELISAs. Subsequently, two bioassays, wound healing and HUVEC tube formation assays, revealed that anti-VEGF Ab $(1{\mu}g/ml)$ & sFlt-1/Fc Ab $(1{\mu}g/ml)$, or SU5416 (VEGFR tyrosine kinase inhibitor, $1{\mu}M$) prevents the activity of VEGF $(1{\sim}10ng/ml)$. Finally, secretion of MMP-9 by VEGF-stimulated macrophages was abolished by treatment of anti-VEGF Ab $(1{\mu}g/ml)$ in gelatin zymography. Conclusion: ELISAs together with bioassays developed in this study are appropriate for evaluation of the efficacy of inhibitors of VEGF.

Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach

  • Shahik, Shah Md.;Salauddin, Asma;Hossain, Md. Shakhawat;Noyon, Sajjad Hossain;Moin, Abu Tayab;Mizan, Shagufta;Raza, Md. Thosif
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.6.1-6.10
    • /
    • 2021
  • Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.

VEGF-VEGFR Signals in Health and Disease

  • Shibuya, Masabumi
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR) system has been shown to play central roles not only in physiological angiogenesis, but also in pathological angiogenesis in diseases such as cancer. Based on these findings, a variety of anti-angiogenic drugs, including anti-VEGF antibodies and VEGFR/multi-receptor kinase inhibitors have been developed and approved for the clinical use. While the clinical efficacy of these drugs has been clearly demonstrated in cancer patients, they have not been shown to be effective in curing cancer, suggesting that further improvement in their design is necessary. Abnormal expression of an endogenous VEGF-inhibitor sFlt-1 has been shown to be involved in a variety of diseases, such as preeclampsia and aged macular degeneration. In addition, various factors modulating angiogenic processes have been recently isolated. Given this complexity then, extensive studies on the interrelationship between VEGF signals and other angiogenesis-regulatory systems will be important for developing future strategies to suppress diseases with an angiogenic component.

Efficacy and Toxicity of Anti-VEGF Agents in Patients with Castration-Resistant Prostate Cancer: a Meta-analysis of Prospective Clinical Studies

  • Qi, Wei-Xiang;Fu, Shen;Zhang, Qing;Guo, Xiao-Mao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8177-8182
    • /
    • 2014
  • Background: Blocking angiogenesis by targeting vascular endothelial growth factor (VEGF) signaling pathway to inhibit tumor growth has proven to be successful in treating a variety of different metastatic tumor types, including kidney, colon, ovarian, and lung cancers, but its role in castration-resistant prostate cancer (CRPC) is still unknown. We here aimed to determine the efficacy and toxicities of anti-VEGF agents in patients with CRPC. Materials and Methods: The databases of PubMed, Web of Science and abstracts presented at the American Society of Clinical Oncology up to March 31, 2014 were searched for relevant articles. Pooled estimates of the objective response rate (ORR) and prostate-specific antigen (PSA) response rate (decline ${\geq}50%$) were calculated using the Comprehensive Meta-Analysis (version 2.2.064) software. Median weighted progression-free survival (PFS) and overall survival (OS) time for anti-VEGF monotherapy and anti-VEGF-based doublets were compared by two-sided Student's t test. Results: A total of 3,841 patients from 19 prospective studies (4 randomized controlled trials and 15 prospective nonrandomized cohort studies) were included for analysis. The pooled ORR was 12.4% with a higher response rate of 26.4% (95%CI, 13.6-44.9%) for anti-VEGF-based combinations vs. 6.7% (95%CI, 3.5-12.7%) for anti-VEGF alone (p=0.004). Similarly, the pooled PSA response rate was 32.4% with a higher PSA response rate of 52.8% (95%CI: 40.2-65.1%) for anti-VEGF-based combinations vs. 7.3% (95%CI, 3.6-14.2%) for anti-VEGF alone (p<0.001). Median PFS and OS were 6.9 and 22.1 months with weighted median PFS of 5.6 vs. 6.9 months (p<0.001) and weighted median OS of 13.1 vs. 22.1 months (p<0.001) for anti-VEGF monotherapy vs. anti-VEGF-based doublets. Conclusions: With available evidence, this pooled analysis indicates that anti-VEGF monotherapy has a modest effect in patients with CRPC, and clinical benefits gained from anti-VEGF-based doublets appear greater than anti-VEGF monotherapy.

Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.278-286
    • /
    • 2008
  • Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.

The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis (암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이)

  • Han Na Lee;Chae Eun Seo;Mi Suk Jeong;Se Bok Jang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.128-137
    • /
    • 2024
  • This review discusses the pivotal role of vascular endothelial growth factors (VEGF) in angiogenesis and lymphangiogenesis, vital processes influencing vascular permeability, endothelial cell recruitment, and the maintenance of tumor-associated blood and lymphatic vessels. VEGF exerts its effects through tyrosine-kinase receptors, VEGFR-1, VEGFR-2, and VEGFR-3. This VEGF-VEGFR system is central not only to cancer but also to diseases arising from abnormal blood vessel and lymphatic vessel formation. In the context of cancer, VEGF and its receptors are essential for the development of tumor-associated vessels, making them attractive targets for therapeutic intervention. Various approaches, such as anti-VEGF antibodies, receptor antagonists, and VEGF receptor function inhibitors, are being explored to interfere with tumor growth. However, the clinical efficacy of anti-angiogenic agents remains uncertain and necessitates further refinement. The article also highlights the physiological role of VEGFs, emphasizing their involvement in endothelial cell functions, survival, and vascular permeability. The identification of five distinct VEGFs in humans (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PLGF) is discussed, along with the classification of VEGFRs as typical receptor tyrosine kinases with distinct signaling systems. The family includes VEGFR-1 and VEGFR-2, crucial in tumor biology and angiogenesis, and VEGFR-3, specifically involved in lymphangiogenesis. Overall, this review has provided a comprehensive overview of VEGF and VEGFR, detailing their roles in various diseases, including cancer. This is expected to further facilitate the utilization of VEGF and VEGFR as therapeutic targets.

Hologram Quantitative Structure-Activity Relationships Study of N-Phenyl-N'-{4-(4-quinolyloxy)phenyl} Urea Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors

  • Keretsu, Seketoulie;Balasubramanian, Pavithra K.;Bhujbal, Swapnil P.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.141-147
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an important signaling protein involved in angiogenesis, which is the formation of new blood vessels from pre-existing vessels. Consequently, blocking of the vascular endothelial growth factor receptor (VEGFR-2) by small molecule inhibitors leads to the inhibition of cancer induced angiogenesis. In this study, we performed a two dimensional quantitative structure activity relationship (2D-QSAR) study of 38 N-Phenyl-N'-{4-(4-quinolyloxy) phenyl} urea derivatives as VEGFR-2 inhibitors based on hologram quantitative structure-activity (HQSAR). The model developed showed reasonable $q^2=0.521$ and $r^2=0.932$ values indicating good predictive ability and reliability. The atomic contribution map analysis of most active compound (compound 7) indicates that hydrogen and oxygen atoms in the side chain of ring A and oxygen atom in side chain of ring C contributes positively to the activity of the compounds. The HQSAR model developed and the atomic contribution map can serve as a guideline in designing new compounds for VEGFR-2 inhibition.

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

PC-766B' and PC-766B, 16-Membered Maerolide Angiogenesis Inhibitors Produced by Nocardia sp. RK97-56

  • Ko, Hack-Ryong;Kakeya, Hideaki;Yoshida, Arika;Onose, Rie;Ueki, Masashi;Muroi, Makoto;Takatsuki, Akira;Matsuzaki, Hiroshi;Osada, Hiroyuki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.829-833
    • /
    • 2002
  • Angiogenesis is an essential event in a variety of physiological and pathological processes. Therefore, effective inhibition of this event is a promising strategy for treating angiogenesis-related diseases, including cancer. The current study investigated two unique bafilomycin-type macrolide inhibitors of angiogenesls, PC-766B' (1) and PC-766B (2). The strain RK97-56 which produced the inhibitors was identified as Nocardia sp. by chemotaxonomic analyses, and the purification of the inhibitors was guided by their anti-angiogenic activities. PC-766B' (1) and PC-766B (2) exhibited potent inhibitory activities towards endothelial cell migration stimulated by the vascular endothelial growth factor (VEGF).