DOI QR코드

DOI QR Code

Hologram Quantitative Structure-Activity Relationships Study of N-Phenyl-N'-{4-(4-quinolyloxy)phenyl} Urea Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors

  • Keretsu, Seketoulie (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Balasubramanian, Pavithra K. (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Bhujbal, Swapnil P. (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Cho, Seung Joo (Department of Biomedical Sciences, College of Medicine, Chosun University)
  • Received : 2017.08.22
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

Vascular endothelial growth factor (VEGF) is an important signaling protein involved in angiogenesis, which is the formation of new blood vessels from pre-existing vessels. Consequently, blocking of the vascular endothelial growth factor receptor (VEGFR-2) by small molecule inhibitors leads to the inhibition of cancer induced angiogenesis. In this study, we performed a two dimensional quantitative structure activity relationship (2D-QSAR) study of 38 N-Phenyl-N'-{4-(4-quinolyloxy) phenyl} urea derivatives as VEGFR-2 inhibitors based on hologram quantitative structure-activity (HQSAR). The model developed showed reasonable $q^2=0.521$ and $r^2=0.932$ values indicating good predictive ability and reliability. The atomic contribution map analysis of most active compound (compound 7) indicates that hydrogen and oxygen atoms in the side chain of ring A and oxygen atom in side chain of ring C contributes positively to the activity of the compounds. The HQSAR model developed and the atomic contribution map can serve as a guideline in designing new compounds for VEGFR-2 inhibition.

Keywords

References

  1. J. Folkman, "Anti-angiogenesis: new concept for therapy of solid tumors", Ann. Surg., Vol. 175, pp. 409-416, 1972. https://doi.org/10.1097/00000658-197203000-00014
  2. G. Bergers, K. Javaherian, K.-M. Lo, J. Folkman, and D. Hanahan, "Effects of angiogenesis inhibitors on multistage carcinogenesis in mice", Science, Vol. 284, pp. 808-812, 1999. https://doi.org/10.1126/science.284.5415.808
  3. T.-P. D. Fan, R. Jagger, and R. Bicknell, "Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy", Trends Pharmacol. Sci., Vol. 16, pp. 57-66, 1995. https://doi.org/10.1016/S0165-6147(00)88979-8
  4. K. J. Kim, B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips, and N. Ferrara, "Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo", Nature, Vol. 362, pp. 841-844, 1993. https://doi.org/10.1038/362841a0
  5. W. Kolch, G. Martiny-Baron, A. Kieser, and D. Marme, "Regulation of the expression of the VEGF/VPS and its receptors: role in tumor angiogenesis", Breast Cancer Res. Treat., Vol. 36, pp. 139-155, 1995. https://doi.org/10.1007/BF00666036
  6. W. P. Leenders, "Targetting VEGF in anti-angiogenic and anti-tumour therapy: Where are we now?", Int. J. Exp. Pathol., Vol. 79, pp. 339-346, 1998.
  7. T. A. T. Fong, L. K. Shawver, L. Sun, C. Tang, H. App, T. J. Powell, Y. H. Kim, R. Schreck, X. Wang, W. Risau, A. Ullrich, K. P. Hirth, and G. McMahon, "SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types", Cancer res, Vol. 59, pp. 99-106, 1999.
  8. L. Sun, N. Tran, F. Tang, H. App, P. Hirth, G. McMahon, and C. Tang, "Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases", J. Med. Chem., Vol. 41, pp. 2588-2603, 1998. https://doi.org/10.1021/jm980123i
  9. L. Sun, N. Tran, C. Liang, F. Tang, A. Rice, R. Schreck, K. Waltz, L. K. Shawver, G. McMahon, and C. Tang, "Design, synthesis, and evaluations of substituted 3-[(3-or 4-carboxyethylpyrrol-2-yl) methylidenyl] indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases", J. Med. Chem., Vol. 42, pp. 5120-5130, 1999. https://doi.org/10.1021/jm9904295
  10. L. F. Hennequin, E. S. Stokes, A. P. Thomas, C. Johnstone, P. A. Ple, D. J. Ogilvie, M. Dukes, S. R. Wedge, J. Kendrew, and J. O. Curwen, "Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors", J. Med. Chem., Vol. 45, pp. 1300-1312, 2002. https://doi.org/10.1021/jm011022e
  11. G. Bold, K.-H. Altmann, J. Frei, M. Lang, P. W. Manley, P. Traxler, B. Wietfeld, J. Bruggen, E. Buchdunger, R. Cozens, S. Ferrari, P. Furet, F. Hofmann, G. Martiny-Baron, J. Mestan, J. Rosel, M. Sills, D. Stover, F. Acemoglu, E. Boss, R. Emmenegger, L. Lasser, E. Masso, R. Roth, C. Schlachter, W. Vetterli, D. Wyss, and J. M. Wood, "New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis", J. Med. Chem., Vol. 43, pp. 2310-2323, 2000. https://doi.org/10.1021/jm9909443
  12. N. A. G. Lankheet, M. J. X. Hillebrand, H. Rosing, J. H. Schellens, J. H. Beijnen, and A. D. R. Huitema, "Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry", Biomed. Chromatogr., Vol. 27, pp. 466-476, 2013. https://doi.org/10.1002/bmc.2814
  13. T. K. Choueiri, F. A. Schutz, Y. Je, J. E. Rosenberg, and J. Bellmunt, "Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials", J. Clin. Oncol., Vol. 28, pp. 2280-2285, 2010. https://doi.org/10.1200/JCO.2009.27.2757
  14. V. G. Ugale, H. M. Patel, and S. J. Surana, "Molecular modeling studies of quinoline derivatives as VEGFR-2 tyrosine kinase inhibitors using pharmacophore based 3D QSAR and docking approach", Arabian Journal of Chemistry, Vol. 10, pp. S1980-S2003, 2017. https://doi.org/10.1016/j.arabjc.2013.07.026
  15. H. X. Chen and J. N. Cleck, "Adverse effects of anticancer agents that target the VEGF pathway", Nat. Rev. Clin. Oncology., Vol. 6, pp. 465-477, 2009. https://doi.org/10.1038/nrclinonc.2009.94
  16. T. Kamba and D. M. McDonald, "Mechanisms of adverse effects of anti-VEGF therapy for cancer", Br. J. cancer, Vol. 96, pp. 1788-1795, 2007. https://doi.org/10.1038/sj.bjc.6603813
  17. J. Verma, V. M. Khedkar, and E. C. Coutinho, "3DQSAR in drug design-a review", Curr. Top. Med. Chem, Vol. 10, pp. 95-115, 2010. https://doi.org/10.2174/156802610790232260
  18. A. Z. Dudek, T. Arodz, and J. Galvez, "Computational methods in developing quantitative structureactivity relationships (QSAR): a review", Comb. Chem. high throughput screen., Vol. 9, pp. 213-228, 2006. https://doi.org/10.2174/138620706776055539
  19. H. Zeng and H. Zhang, "Combined 3D-QSAR modeling and molecular docking study on 1, 4-dihydroindeno [1, 2-c] pyrazoles as VEGFR-2 kinase inhibitors", J. Mol. Graph. Model., Vol. 29, pp. 54-71, 2010. https://doi.org/10.1016/j.jmgm.2010.04.004
  20. M. M. Neaz, F. A. Pasha, M. Muddassar, S. H. Lee, T. Sim, J.-M. Hah, and S. J. Cho, "Pharmacophore based 3D-QSAR study of VEGFR-2 inhibitors", Med. Chem. Res., Vol. 18, pp. 127-142, 2009. https://doi.org/10.1007/s00044-008-9113-4
  21. C. Munoz, F. Adasme, J. H. Alzate-Morales, A. Vergara-Jaque, T. Kniess, and J. Caballero, "Study of differences in the VEGFR2 inhibitory activities between semaxanib and SU5205 using 3D-QSAR, docking, and molecular dynamics simulations", J. Mol. Graph. Model., Vol. 32, pp. 39-48, 2012. https://doi.org/10.1016/j.jmgm.2011.10.005
  22. K. Kubo, T. Shimizu, S.-I. Ohyama, H. Murooka, A. Iwai, K. Nakamura, K. Hasegawa, Y. Kobayashi, N. Takahashi, K. Takahashi, S. Kato, T. Izawa, and T. Isoe, "Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of n-phenyl-n '-{4-(4-quinolyloxy) phenyl} ureas", J. Med. Chem., Vol. 48, pp. 1359-1366, 2005. https://doi.org/10.1021/jm030427r
  23. M. Clark, R. D. Cramer, and N. Van Opdenbosch, "Validation of the general purpose Tripos 5.2 force field", J. Comput. Chem., Vol. 10, pp. 982-1012, 1989. https://doi.org/10.1002/jcc.540100804
  24. M. A. Avery, M. Alvim-Gaston, C. R. Rodrigues, E. J. Barreiro, F. E. Cohen, Y. A. Sabnis, and J. R. Woolfrey, "Structure-activity relationships of the antimalarial agent artemisinin. 6. The development of predictive in vitro potency models using CoMFA and HQSAR methodologies", J. Med. Chem., Vol. 45, pp. 292-303, 2002. https://doi.org/10.1021/jm0100234
  25. C. R. Rodrigues, T. M. Flaherty, C. Springer, J. H. McKerrow, and F. E. Cohen, "CoMFA and HQSAR of acylhydrazide cruzain inhibitors", Bioorg. Med. Chem. Lett., Vol. 12, pp. 1537-1541, 2002. https://doi.org/10.1016/S0960-894X(02)00189-0
  26. W. Zhu, G. Chen, L. Hu, X. Luo, C. Gui, C. Luo, C. M. Puah, K. Chen, and H. Jiang, "QSAR analyses on ginkgolides and their analogues using CoMFA, CoMSIA, and HQSAR", Bioorg. Med. Chem., Vol. 13, pp. 313-322, 2005. https://doi.org/10.1016/j.bmc.2004.10.027
  27. S. P. Bhujbal, S. Keretsu, and S. J. Cho, "HQSAR study on substituted 1H-pyrazolo [3, 4-b] pyridines derivatives as FGFR kinase antagonists", J. Chosun Natural Sci., Vol. 10, pp. 85-94, 2017.