• Title/Summary/Keyword: VEGETATION TYPES OF WARM TEMPERATE FOREST

Search Result 23, Processing Time 0.031 seconds

Conservation Status and Restoration of the Evergreen Broad-leaved forests in the Warm Temperate Region, Korea( I ) - Distribution of the Evergreen Broad-laved Forests and Category of Degraded Levels - (난온대 상록활엽수림 보전실태 및 복원(I) - 상록활엽수림 분포 및 훼손등급 기준 -)

  • 박석곤;오구균
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2002
  • In order to understand the condition of mostly-degraded evergreen broad-leaved forests(EBLF) and to make a restoration plan of EBLF in the Korean warm temperate, the distribution of EBLF and forest vegetation types have been investigated and the categories of degraded levels have been set. The coverage of the EBLF in the Korean peninsula was approximately 10,285ha based on the existing literature review and the actual vegetation map. Forest vegetation types have been investigated at thirty-two area of the south coast and inland in the warm temperate region. As a result, The forest vegetation was classified as 52 types; 26 types of EBLF, 13 types of semi-evergreen broad-leaved forests, 9 types of deciduous broad-leaved forests, 4 types of evergreen coniferous forests. The categories of degraded levels were divided into 8 levels and 14 sub-levels according to the importance percentage(I.P.) and the number of warm temperate species.

Characteristics and Restoration Strategies of Warm-Temperate Forests Vegetation Types in Island Area on the Korean Peninsula (한반도 도서지역의 난온대림 식생유형 특징 및 복원전략)

  • Kang, Hyun-Mi;Kang, Ji-Woo;Sung, Chan-Yong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.507-524
    • /
    • 2022
  • In this study, we revealed the location environment and community structural characteristics after extensively investigating Korea's warm-temperate island areas and categorizing vegetation through TWINSPAN analysis. Based on it, this study aims to suggest the direction of the vegetation restoration plan for warm-temperate forests by deriving a restoration strategy for each vegetation type. The vegetation types were clearly divided into eight types, and communities I through IV were good evergreen broad-leaved forests dominated by Machilus thunbergii and Castanopsis sieboldii. On the other hand, communities V through VIII were Pinus thunbergii forest, deciduous broad-leaved forest, and artificial forest, and retrogressive succession vegetation in the warm-temperate areas. The environmental factors derived from the DCA analysis were altitude (average temperature of the coldest month) and distance from the coastline (salt tolerance). The distribution pattern of warm-temperate forests has been categorized into M. thunbergii, C. sieboldii and Cyclobalanopsis spp. forest types according to the two environmental factors. It is reasonable to apply the three vegetation types as restoration target vegetation considering the location environment of the restoration target site. In communities V through VIII, P. thunbergiiand deciduous broad-leaved formed a canopy layer, and evergreen broad-leaved species with strong seed expansion frequently appeared in the ground layer, raising the possibility of vegetation succession as evergreen broad-leaved forests. The devastated land where forests have disappeared in the island areas is narrow, but vegetation such as P. thunbergii and deciduous broad-leaved forests, which have become a retrogressive succession, forms a large area. The restoration strategy of renewing this area into evergreen, broad-leaved forests should be more effective in realizing carbon neutrality and promoting biodiversity.

Classification ofWarm Temperate Vegetations and GIS-based Forest Management System

  • Cho, Sung-Min
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.216-224
    • /
    • 2021
  • Aim of this research was to classify forest types at Wando in Jeonnam Province and develop warm temperate forest management system with application of Remote Sensing and GIS. Another emphasis was given to the analysis of satellite images to compare forest type changes over 10 year periods from 2009 to 2019. We have accomplished this study by using ArcGIS Pro and ENVI. For this research, Landsat satellite images were obtained by means of terrestrial, airborne and satellite imagery. Based on the field survey data, all land uses and forest types were divided into 5 forest classes; Evergreen broad-leaved forest, Evergreen Coniferous forest, Deciduous broad-leaved forest, Mixed fores, and others. Supervised classification was carried out with a random forest classifier based on manually collected training polygons in ROI. Accuracy assessment of the different forest types and land-cover classifications was calculated based on the reference polygons. Comparison of forest changes over 10 year periods resulted in different vegetation biomass volumes, producing the loss of deciduous forests in 2019 probably due to the expansion of residential areas and rapid deforestation.

Classification of Warm Temperate Vegetation Using Satellite Data and Management System (위성영상을 이용한 난대림 식생 분류와 관리 시스템)

  • 조성민;오구균
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • Landsat satellite images were analyzed to study vegetation change patterns of warm-temperate forests from 1991 to 2002 in Wando. For this purpose, Landsat TM satellite image of 1991 and Landsat ETM image of 2002 were used for vegetation classification using ENVI image processing software. Four different forest types were set as a classification criteria; evergreen broadleaf, evergreen conifer, deciduous broadleaf, and others. Unsupervised classification method was applied to classily forest types. Although it was impossible to draw exact forest types in rocky areas because of differences in data detection time and rough resolution of image, 2002 data revealed that total 2,027ha of evergreen broadleaf forests were growing in Wando. Evergreen broadleaves and evergreen conifers increased in total areas compared to 11 years ago, but there was sharp decrease in deciduous broadleaves. GIS-based management system for warm-temperate forest was done using Arc/Info. Geographic and attribute database of Wando such as vegetation, soils, topography, land owners were built with Arc/Info and ArcView. Graphic user interface which manages and queries necessary data was developed using Avenue.

A Phytosociological Study of Hokkaido Vegetation, Japan (북해도 식생에 대한 식물사회학적 고찰)

  • Kim, Jong-Won
    • The Korean Journal of Ecology
    • /
    • v.12 no.2
    • /
    • pp.109-122
    • /
    • 1989
  • The vegetation and landscape of Hokkaido were phytosociologically referred. The region of F a g e t e a c r e n a t a e on Hokkaido is divided into two types of deciduous broad-leaved forest: the oak (Quercus mongolica var. grosseserrata) forests mixed with conifers (mainly Abies sachalinensis) and the beech (Fagus crenata) forests of northernmost distribution in far-east Asia. The oak forests, which is dominated by Quercus mongolica var. grosseserrata in Japanse islands, seem to be developed from different climatic and edaphic conditions, especially in the amount and sharing pattern of precipitation in a year, and weak acid brown forest soil, volcanic ash soil and sandy soil. On the all-inclusive phytogeographical view-point, Hokkaido is situated at northernmost region of F a g e t e a c r e n a t a e (cool-temperate zone)neighboring with subarctic and subalpine vegetation, vegetation, but the evergreen broad-leaved forest (C a m e l l i e t e a j a p o n i c a e, warm-temperate zone) is abscent.

  • PDF

How is SWIR useful to discrimination and a classification of forest types?

  • Murakami, Takuhiko
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.760-762
    • /
    • 2003
  • This study confirmed the usefulness of short-wavelength infrared (SWIR) in the discrimination and classification of evergreen forest types. A forested area near Hisayama and Sasaguri in Fukuoka Prefecture, Japan, served as the study area. Warm-temperate forest vegetation dominates the study site vegetation. Coniferous plantation forest, natural broad-leaved forest, and bamboo forest were analyzed using LANDSAT5/TM and SPOT4/HRVIR remote sensing data. Samples were extracted for the three forest types, and reflectance factors were compared for each band. Kappa coefficients of various band combinations were also compared by classification accuracy. For the LANDSAT5/TM data observed in April, October, and November, Bands 5 and 7 showed significant differences between bamboo, broad-leaved, and coniferous forests. The same significant difference was not recognized in the visible or near-infrared regions. Classification accuracy, determined by supervised classification, indicated distinct improvements in band combinations with SWIR, as compared to those without SWIR. Similar results were found for both LANDSAT5/TM and SPOT4/HRVIR data. This study identified obvious advantages in using SWIR data in forest-type discrimination and classification.

  • PDF

A Review of Vegetation Succession in Warm-Temperate Evergreen Broad-Leaved Forests -Focusing on Actinodaphne lancifolia Community- (난온대 상록활엽수림 지역의 식생천이계열 고찰 -육박나무군락을 중심으로-)

  • Park, Seok-Gon;Choi, Song-Hyun;Lee, Sang-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.77-96
    • /
    • 2018
  • We investigated and analyzed three Korean island sites (Bijin-do, Ae-do, and Bogil-do) and one Japanese site (Tachibanayama) of sword-leaf litsea (Actinodaphne lancifolia) forests, known as the climax forest, to discuss the vegetation succession sere of warm-temperature evergreen broad-leaved forests. We then reviewed the literature in Korea, Japan, China, and Taiwan to consider the distribution characteristics of evergreen broad-leaved forests, vegetation succession sere, and climax tree species. Although Mt. Tachibana and Ae-do showed the most advanced vegetation structure, the soil and ordination (CCA) analysis indicated that it was not enough to consider that the sword-leaf litsea forest was at the climax stage in the warm-temperature region. The Actinodaphne lancifolia forest is sparsely distributed in Korea and Japan while the common types of vegetation in the warm temperate zone region in East Asia are Machilus spp., Castanopsis spp., and Cyclobalanopsis spp. The vegetation succession sere of the Korean warm-temperature region is thought to have a secondary succession such as Pinus thunbergii, P. densiflora, Q. serrata (early stage) through Machilus thunbergii, innamomum yabunikkei, Neolitsea sericea, Actinodaphne lancifolia (middle stage) to Castanopsis sieboldii, Q. acuta, Q. salicina (climax stage). However, Machilus thunbergii will be the climax species as an edaphic climax in places where there is a strong influence of the sea wind, or it is difficult to supply the seeds of Castanopsis spp. and Cyclobalanopsis spp.

A Study on Vegetation Structure of Cultural Landscape Forest of Dongbaek Island, Busan (부산광역시 동백섬 문화경관림 식생구조 특성 연구)

  • Kim, Kyungwon;Lee, Kyong-Jae;Choi, Jin Woo;Yeum, Jung Hun;Ahn, In Su
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.205-214
    • /
    • 2014
  • The purpose of this study is to suggest vegetation management method as the cultural landscape forest of Dongbaek Island which is the district monument. The study area was $20,000m^2$ around the peak area in management as the nature sabbatical area. Vegetation structure type was classified with the criteria of topography, vegetation, management and the management plan was derived from the vegetation structure analysis according to the types. Vegetation structure types were Management-Camellia japonica, Non-management-Eurya japonica, Non-management-Rugged area-Eurya japonica. As the result of vegetation structure, Pinus thunbergii dominated in canopy layer and Camellia japonica and Eurya japonica dominated in Type I and in Type II and III, respectively. Especially, Machilus thunbergii as the climax species in the warm temperate forest were distributed centering shrubs, and as the result of distribution of diameter of breast height, middle size of Celtis sinensis and Machilus thunbergii were distributed in type I, II. Machilus thunbergii were distributed in range of 4 to 44 individuals through the all types. Mean age of canopy layer was 66 year-old and sub-canopy layer was 22.9 year-old. Shanon's species diversity was analysed from 0.5472 to 0.8646. As the vegetation management direction of Dongbaek island, managed Camellia japonica forest was suggested to maintain the regular management and non-managed Eurya japonica forest was required to remove the Eurya japonica and plant the Camellia japonica. In case of non managed Eurya japonica forest in rugged area, vegetation succession was required to laurel forest.

The Types of Warm Temperate Forest and the Degraded Levels in the Island Area of the West and South Coast (서남해안 도서지역의 난온대 식생유형화 및 훼손등급)

  • Park, Seok-Gon;Sung, Chan-Yong;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.579-593
    • /
    • 2021
  • In order to understand the types of vegetation in warm temperate-climate zones, vegetation was investigated in several island areas in Jeollanam-do (Jindo, Wando, Gangjin, Goheung, and Yeosu). The evaluation standard for degraded level of warm temperate forests were proposed based on the importance percentage (IP) in canopy layer of the evergreen broad-leaf forests and the number of arboreal evergreen broad-leaf species. Through these measurements, the restoration types and techniques for each degraded level were estimated, and it is intended to be used in establishing restoration plans for the southwest coast island area. The vegetation was analyzed using the two-way indicator species analysis (TWINSPAN) method using survey data of 307 plots. As a result, it was divided into 8 communities, and the appearance characteristics of evergreen broad-leaf species were identified in each community. Community I was located on the lower slope at an altitude of 86.6 m, and Neolitsea sericea and Castanopsis sieboldii were dominant. Communities II and III were the vegetation types that appear on the coast below an altitude of 10.5 to 22.5 m, and Machilus thunbergii, Cinnamomum japonicum, N. sericea, and C. sieboldii were dominant. Communities IV and V were vegetation types that appeared in the lower and middle slops between the altitudes of 71.9 to 153.4m, and C. sieboldii was dominant. In community VI, the N. sericea was dominant in the lower and middle slops at an altitude of 166.9 m. The last communities VII and VIII were the vegetation types that appeared on the middle slop at an altitude of 187.8 to 246.2 m. Also, Quercus acuta and Q. salicina were present. In summary, the evergreen broad-leaf forests dominated by M. thunbergii, C. japonicum, and N. sericea appeared mainly in the coastal areas of the lowlands. The community of C. sieboldii was distributed higher inland than this community. The communities that appeared mainly in the inland highlands at levels above these two communities were Q. acuta and Q. salicina. The degraded level was classified as 0 to V, according to the IP of arboreal evergreen broad-leaf species and the number of arboreal evergreen broad-leaf species. According to the degraded level, the restoration types (preservation, induction, improvement, creation) and the restoration techniques were determined.

Monitoring the Restoration of Evergreen Broad-Leaved Forests in the Warm-Temperate Region(III) (난온대 기후대의 상록활엽수림 복원 모니터링(III))

  • Kang, Hyun-Mi;Kang, Ji-Woo;Kim, Ji-Hae;Sung, Chan-Yong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.87-101
    • /
    • 2022
  • This study analyzed changes in the vegetation structure of 16 permanent plots (experimental and control) installed in Wando Arboretum in 1996 to monitor the long-term change process of evergreen broad-leaved forests in warm temperate. Especially, this study discusses the effects of trial treatment (selection cutting and plant introduction), introduced as a restoration technique in 1996, on vegetation development. In communities dominated by Quercus acuta in the canopy (permanent plots 1 through 3), this species's mean important percentage (MIP) decreased, and the evergreen broad-leaved species was introduced from outside increased, likely to change the vegetation structure in the future. The expansion of the evergreen broad-leaved species group was also confirmed in Q. acuta-deciduous broad-leaved forests (permanent plots 5 and 7) and Pinus densifloraforests (permanent plots 9 and 10). In the experimental plots where thinning was carried out, the zoochory (the dispersal of seeds by birds), Cinnamomum yabunikkei, Neolitsea sericea, Machilus thunbergii, etc., and the expansion of the influence of evergreen broad-leaved species were remarkable, so it is considered to have effectively promoted the vegetation development in warm temperate forests. Although evergreen broad-leaved species were planted in the experimental plot to change vegetation structure, it seems the effect on the change was weak due to the small amount of planting. Compared to other vegetation types, the change in the vegetative structure of the pine forest to an evergreen broad-leaved forest was clear due to the decline of P. densiflora and P. thunbergii.