• 제목/요약/키워드: V2X Certification

검색결과 5건 처리시간 0.024초

한국 V2X 보안인증체계 분석 및 개선방향 연구 (A Study on KOREA SCMS Analysis and Improvement Method)

  • 엄성욱;김동환;김성섭;조성우
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.31-37
    • /
    • 2021
  • SCMS is a security credential management system for V2X communication, which performs generation/ provision/validation of device's security certificates. In this paper, we will explain about the main functions of SCMS and the role of each institution, and propose the following improvement measures in the process of establishing the Korean V2X security certification system. First, connection scheme of ERA (Enrollment certificate RA) between SCMS and Vehicle Manager Information System (VIMS) will be proposed. Second part is the problem of certificate revocation and proposal of improvements.

FPGA를 이용한 Cdma2000 EV-DO 시큐리티 지원 하드웨어 설계 및 구현 (Design and Implementation of the Cdma2000 EV-DO security layer supporting Hardware using FPGA)

  • 권환우;이기만;양종원;서창호;하경주
    • 정보보호학회논문지
    • /
    • 제18권2호
    • /
    • pp.65-73
    • /
    • 2008
  • Cdma2000 1x EV-DO 에서의 보안 계층은 현재 3GPP2를 통해 표준화 규격(C.S0024-A v2.0)을 완성해 나가고 있는 중이며, 이에 따라 cdma2000 1x EV-DO 환경의 AT와 AN 간 전송되는 데이터에 대한 보안 기능을 적용하기 위하여 표준 문서에 명시된 보안 계층 구현요구에 맞는 하드웨어 보안 장치가 요구되고 있다. 본 논문에서는 FPGA 플랫폼을 통해 EV-DO 시큐리티 계층 프로토콜을 시뮬레이션 하여 EV-DO 시큐리티 지원 하드웨어 장치를 설계하였으며, 패킷 데이터에 대한 인증 및 서비스를 위하여 SHA-1 해쉬 알고리즘과 데이터 암호화를 위한 AES, SEED, ARIA 알고리즘을 탑재했으며, 키교환 프로토콜을 이용한 키 교환을 수행 한 후 데이터에 대한 인증 및 암호화 기능을 선택적으로 적용한 하드웨어를 구현하였다.

XML-Signature 확장을 통한 2단계 서버 로그인 인증 시스템의 설계 및 구현 (A Design and Implementation of Two-Phase Server Login Authentication System based on XML-Signature Extension)

  • 김용화;김진성;김용성
    • 정보처리학회논문지C
    • /
    • 제14C권4호
    • /
    • pp.321-330
    • /
    • 2007
  • 다양한 웹 콘텐츠 제공 환경에서 네트워크에 공개된 서버의 정보 자원을 보호하기 위하여 XML 보안 기술 스펙인 XML-Signature 스키마를 확장하여 2단계 서버 로그인 인증 시스템을 제안하고, 이를 설계 및 구현한다. 제안할 인증 시스템은 XML 기반의 인증서를 온라인상에서 요청 및 발행하고 인증기관에서 제공한 인증서확장 정보를 XML 인증서 관리 서버(XCMS)에 등록 한 후 사용자의 인증서 패스워드로 인증기관에 의해서 1차 인증을 수행한다. 또한 인증서 패스워드 이외에 추가로 입력한 인증서확장 정보와 인증서 관리서버에 등록된 사용자의 인증서 확장 정보를 SOAP 메시지로 요청한 후 두 값을 비교하여 2차 인증을 수행하는 보안이 강화된 인증 시스템이다.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.