• Title/Summary/Keyword: V-notch

Search Result 160, Processing Time 0.023 seconds

The effect of Heat input and PWHT on the microstructure and mechanical properties of HSB600 steel weldments (HSB600강 GMA 용접부에서 입열량과 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향)

  • Koh, Jin-Hyun;Kim, Nam-Hoon;Jang, Bok-Su;Ju, Dong-Hwi;Lim, Young-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5405-5411
    • /
    • 2011
  • The effects of heat input (1.5~3.6 kJ/mm) and post weld heat treatment (PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strengths and hardness of as-welded specimens were decreased as heat input increased, but CVN (Charpy V-Notch) impact energy did not show any differences. The fine-grained acicular ferrite was mainly formed in the low heat input while polygonal and side plate ferrites were dominated in the high heat inputs. Meanwhile, tensile strength and hardness of PWHT weldments were decreased due to the coarsening and globular of microstructure as well as reduction of residual stresses.

Evaluation of the Applicability of Structural Steels to Cold Regions by the Charpy Impact Test (샤르피 충격시험을 통한 구조용강재의 극한지 적용성 검토)

  • Lee, Chin-Hyung;Shin, Hyun-Seop;Park, Ki-Tae;Yang, Seunng-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2011
  • The fabrication of steel structural members always involves welding process such as flux cored arc welding. Therefore, for the application of structural steels to cold regions, it is a prerequisite to clarify the service temperature of the welded joints in order to ensure the structural integrity of the welded parts. In this study, the Charpy impact test was conducted to evaluate the service temperature of structural steel weld. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The service temperatures of the weld metal, HAZ (heat affected zone) and base metal were derived by the absorbed energy and the impact test requirements; thus the applicability of the structural steels to cold regions was discussed in detail.

Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region (Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향)

  • Lee, Ki-Hyoung;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.

Integrated bioinformatics analysis of validated and circulating miRNAs in ovarian cancer

  • Dogan, Berkcan;Gumusoglu, Ece;Ulgen, Ege;Sezerman, Osman Ugur;Gunel, Tuba
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2022
  • Recent studies have focused on the early detection of ovarian cancer (OC) using tumor materials by liquid biopsy. The mechanisms of microRNAs (miRNAs) to impact OC and signaling pathways are still unknown. This study aims to reliably perform functional analysis of previously validated circulating miRNAs' target genes by using pathfindR. Also, overall survival and pathological stage analyses were evaluated with miRNAs' target genes which are common in the The Cancer Genome Atlas and GTEx datasets. Our previous studies have validated three downregulated miRNAs (hsa-miR-885-5p, hsa-miR-1909-5p, and hsa-let7d-3p) having a diagnostic value in OC patients' sera, with high-throughput techniques. The predicted target genes of these miRNAs were retrieved from the miRDB database (v6.0). Active-subnetwork-oriented Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by pathfindR using the target genes. Enrichment of KEGG pathways assessed by the analysis of pathfindR indicated that 24 pathways were related to the target genes. Ubiquitin-mediated proteolysis, spliceosome and Notch signaling pathway were the top three pathways with the lowest p-values (p < 0.001). Ninety-three common genes were found to be differentially expressed (p < 0.05) in the datasets. No significant genes were found to be significant in the analysis of overall survival analyses, but 24 genes were found to be significant with pathological stages analysis (p < 0.05). The findings of our study provide in-silico evidence that validated circulating miRNAs' target genes and enriched pathways are related to OC and have potential roles in theranostics applications. Further experimental investigations are required to validate our results which will ultimately provide a new perspective for translational applications in OC management.

Soil Loss and Water Runoff in a Watershed in Yeoju (소유역(小流域)에서 토양(土壤) 유실(流失) 및 물 유출양상(流出樣相))

  • Lee, Nan-Jong;Oh, Se-Jin;Jung, Pil-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.211-215
    • /
    • 1998
  • Soil loss and runoff were investigated in a small watershed located in Sangeo-ri, Yeoju-eup, Yeoju-gun, Kyonggi-do. The watershed with the area of 35 ha consists of forest, grassland, uplands and mulberry. V-notch type water tank. flow-meter, automatic water sampler and rain gauge were installed at the main outlet stream. Out of $1.037.9Mg\;35ha^{-1}$ of total annual rainfall. 17.9% was lost via run-off. The total amount of soil eroded was $152.2Mg\;35ha^{-1}$, of which $78.6Mg\;35ha^{-1}$ was suspended load and $73.6Mg\;35ha^{-1}$ ha was sediment load. The soil losses under different land uses were $16.02Mg\;ha^{-1}$ for upland annual Crops. $2.69Mg\;ha^{-1}$ for mulberry field, $0.58Mg\;ha^{-1}$ for grassland and $0.55Mg\;ha^{-1}$ for forest. The predicted soil loss by Universal Soil Loss Equation was approximately 20% underestimated in forest, grassland and uplands, and 32% underestimated in mulberry field.

  • PDF

Developing an On-Line Monitoring System for a Forest Hydrological Environment - Development of Hardware - (산림수문환경(山林水文環境) 모니터링을 위(爲)한 원거리(遠距離) 자동관측(自動觀測)시스템의 개발(開發) - 하드웨어를 중심(中心)으로 -)

  • Lee, Heon Ho;Suk, Soo Il
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.405-413
    • /
    • 2000
  • This study was conducted to develop an on-line monitoring system for a forest hydrological environment and its meteorological condition, such as temperature, wind direction and speed, rainfall and water level on V-notch, electrical conductivity(EC), potential of hydrogen(PH) by the motor drive sensor unit and measurement with a single-chip microprocessor as controller. These results are summarized as follows ; 1. The monitoring system consists of a signal process unit, motor drive sensor unit, radio modem unit and power supply. 2. The motor drive sensor unit protects the sensor from swift current or freezing and can constantly maintain fixed water level during measurements. 3. This monitoring system can transfer the data by radio modem. Additionally, this system can monitor hydrological conditions in real time. 4. The hardware was made of several modules with an independent CPU. They can be mounted, removed, repaired and added to. Their function can be changed and expanded. 5. These are the result of an accuracy test, the values of temperature, EC and pH measured within an error range of ${\pm}0.2^{\circ}C$, ${\pm}1{\mu}S$ and ${\pm}0.1pH$ respectively. 6. This monitoring system proved to be able to measure various factors for a forest hydrological environment in various experimental stations.

  • PDF

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering. Inc., Troy, USA) and ANSYS (Swanson Analysis Systems. Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Viva dent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition. Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

  • PDF

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering, Inc., Troy, USA) and ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Vivadent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition, Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

MICROLEAKAGE OF MICROFILL AND FLOWABLE COMPOSITE RESINS IN CLASS V CAVITY AFTER LOAD CYCLING (Flowable 및 microfill 복합레진으로 충전된 제 5급와동에서 load cycling 전,후의 미세변연누출 비교)

  • Kang, Suk-Ho;Kim, Oh-Young;Oh, Myung-Hwan;Cho, Byeong-Hoon;Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Low-viscosity composite resins may produce better sealed margins than stiffer compositions (KempScholte and Davidson, 1988: Crim, 1989). Plowable composites have been recommended for use in Class V cavities but it is also controversial because of its high rates of shrinkage. On the other hand, in the study comparing elastic moduli and leakage, the microfill had the least leakage (Rundle et at. 1997) Furthermore, in the 1996 survey of the Reality Editorial Team, microfills were the clear choice for abfraction lesions. The purpose of this study was to evaluate the microleakage of 6 compostite resins (2 hybrids, 2 microfills, and 2 flowable composites) with and without load cycling. Notch-shaped Class V cavities were prepared on buccal surface of 180 extracted human upper premolars on cementum margin. The teeth were randomly divided into non-load cycling group (group 1) and load cycling group (group 2) of 90 teeth each. The experimental teeth of each group were randomly divided into 6 subgroups of 15 samples. All preparations were etched, and Single bond was applied. Preparations were restored with the following materials (n=15) : hybrid composite resin [Z250(3M Dental Products Inc. St. Paul, USA), Denfil(Vericom, Ahnyang, Korea)], microfill [Heliomolar RO(Vivadent, Schaan, Liechtenstein), Micronew(Bisco Inc. Schaumburg, IL, USA)], and flowable composite[AeliteFlo(Bisco Inc. Schaumburg, IL, USA), Revolution(Kerr Corp. Orange, CA, USA)]. Teeth of group 2 were subjected to occlusal load (100N for 50,000 cycles) using chewing simulator(MTS 858 Mini Bionix II system, MTS Systems Corp. Minn. USA). All samples were coated with nail polish 1mm short of the restoration, placed in 2% methylene blue for 24 hours, and sectioned with a diamond wheel. Enamel and dentin/cementum margins were analyzed for microleakage on a sclale of 0 (no leakage) to 3 (3/3 of wall). Results were statistically analyzed by Kruscal-Wallis One way analysis, Mann-Whitney U-test, and Student-Newmann-Keuls method. (p = 0.05) Results : 1. There was significantly less microleage in enamel margins than dentinal margins of all groups (p<0.05) 2. There was no significant between six composite resin in enamel margin of group 1. 3. In dentin margin of group 1, flowable composite had more microleakage than others but not of significant differences. 4. there was no significant difference between six composite resin in enamel margin of group 2. 5. In dentin margin of group 2, the microleakage were R>A =H=M>D>Z. But there was no significant differences. 6. In enamel margins, load cycling did not affect the marginal microleakage in significant degree. 7. In enamel margins, load cycling did affect the marginal microleakage only in Revolution. (p<0.05).

Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints (용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성)

  • Lee, Chin Hyung;Shin, Hyun Seop;Park, Ki Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.693-700
    • /
    • 2012
  • In this study, the Charpy impact test along with metallurgical observation was conducted to evaluate low temperature impact toughness of structural steel welds with different welding processes to find out the optimal welding process to guarantee the required impact toughness at low temperatures. The welding processes employed are shield metal arc welding (SMAW) and flux cored arc welding(FCAW), which are commonly used welding methods in construction. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. To investigate the impact toughness at low temperatures of the steel welds, specimens were extracted from the weld metal and the heat affected zone. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The low temperature impact performance was evaluated based on the correlation between the absorbed energy and the microstructure. Analysis of the results showed that the optimal welding process to ensure the higher low temperature impact toughness of the HAZ and the weld metal is SMAW process using the welding consumable for steels targeted to low temperature use.