Browse > Article

Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region  

Lee, Ki-Hyoung (Department of Materials Science and Engineering, KAIST)
Park, Sang-Gyu (Department of Materials Science and Engineering, KAIST)
Kim, Min-Chul (Nuclear Materials Research Division, KAERI)
Lee, Bong-Sang (Nuclear Materials Research Division, KAERI)
Wee, Dang-Moon (Department of Materials Science and Engineering, KAIST)
Publication Information
Korean Journal of Metals and Materials / v.47, no.9, 2009 , pp. 533-541 More about this Journal
Abstract
Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.
Keywords
reactor pressure vessel; Ni-Mo-Cr low alloy steel; cleavage fracture toughness; master curve; charpy impact toughness;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Y. S. Ahn, H. D. Kim, T. S. Byun, Y. J. Oh, G. M. Kim, and J. H. Hong, Nucl. Eng. Design 194, 161 (1999)   DOI   ScienceOn
2 D. A. Curry and J. F. Knott, Met. Sci. 12, 511 (1978)   DOI   ScienceOn
3 R. O. Ritchie, W. L. Server, and R. A. Wullaert, Metall. Trans. 10A, 15 (1979)
4 G. Z. Wang and J. H. Chen, Metall. and Mat. Trans. 27A, 1909 (1996)   DOI
5 ASTM standard E23-07 (2007)
6 S. H. Kim, S. H. Lee, and Y. J. Oh, J. Kor. Inst. Met. & Mater. 40, 266 (2002)
7 H. Kotilainen, Metals Laboratory Report 41, p. 26, Technical Research Center of Finland (1979)
8 S. Atamert and J. Stekly, Microstructure, Surface Eng. 9, 231 (1993)   DOI
9 J. P Naylor and P. R. Krahe, Metall. Trans. 5, 1699 (1984)   DOI
10 F. B. Pickering and T. Gladman, Iron and Steel Inst., Spec. Rep. No 93, 10 (1963)
11 A. From and R. Sandstrom, Materials Characterization 42, 111 (1999)   DOI   ScienceOn
12 A. D. Schino and C. Guarnaschelli, Materials Letters Accepted
13 D. A. Curry, Met. Sci. 14, 319 (1980)   DOI
14 S. Lee, S. Kim, B. Hwang, B. S. Lee, and C. G. Lee, Acta Materialia 50, 4755 (2002)   DOI   ScienceOn
15 B. Tanguy, J. Besson, and A. Pineau, Scripta Materialia 49, 191 (2003)   DOI   ScienceOn
16 G. R. Odette, Scripta Metallurgica 17, 1183 (1983)   DOI   ScienceOn
17 C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Scripta Materialia 58, 492 (2008)   DOI   ScienceOn
18 K. Wallin, Eng. Frac. Mech. 22, 149 (1985)   DOI   ScienceOn
19 ASME B & PV Code Sec. II, Part A, SA508 (2005)
20 B. V. Narasimha Rao and G. Thomas, Metal. Trans. A 11A, 441 (1980)
21 ASTM standard E208-06 (2006)
22 A. A. Griffith, Philosophical Transactions 221, 163 (1920)
23 R. H. Van Stone, T. B. Cox, J. R. Low, and J. A. Psioda, Inter. Met. Review 30, 157 (1985)
24 ASTM Standard E1921-08 (2008)
25 W. J. Yang, B. S. Lee, M. C. Kim, J. H. Hong, and M. Y. Huh, J. Kor. Inst. Met. & Mater. 41, 855 (2003)
26 F. B. Pickering, Physical Metallurgy and the Design of Steels, p. 14, Applied Science Publishers, (1978)
27 S. G. Park, M. C. Kim, B. S. Lee, and D. M. Wee, J. Kor. Inst. Met. & Mater. 46, 771 (2008)
28 P. Brozzo, G. Buzzichelli, A. Mascanzoni, and M. Mirabile, Met. Sci. 11, 132 (1977)
29 V. K. Sikka and J. Moteff, J. Nucl. Mat. 54, 325 (1974)   DOI   ScienceOn
30 Y. R. Im, Y. J. Oh, B. J. Lee, J. H. Hong, and H. C. Lee, J. Nucl. Mater. 297, 138 (2001)   DOI   ScienceOn
31 H. J. Rack, Scripta Metallurgica 13, 577 (1979)   DOI   ScienceOn
32 W. J. Yang, M. Y. Huh, S. J. Roh, B. S. Lee, Y. J. Oh, and J. H. Hong, J. Kor. Inst. Met. & Mater. 38, 675 (2000)
33 P. Bowen, S. G. Druce, and J. F. Knott, Acta Metall. 34, 1121 (1986)   DOI   ScienceOn
34 R. O. Ritchie, J. F. Knott, and J. R. Rice, J. Mech. Phys. Solids. 21, 395 (1973)   DOI   ScienceOn
35 D. Bhattacharjee, C. L. Davis, and J. F. Knott, Ironmaking and Steelmaking 30, 249 (2003)   DOI   ScienceOn
36 S. G. Druce and B. C. Edwards, Nucl. Energy 9, 347 (1980)
37 K. Wallin, K. Torronen, R. Ahlstrand, B. Timofeev, V. Rybin, V. Nikolaev, and A. Morozov, Nucl. Eng. Design 135, 239 (1992)   DOI   ScienceOn
38 H. Otani, F. Terasaki, and T. Kunitake, Trans. Iron Steel Inst. 201, 5 (1972)
39 Y. S. Ahn, Y. J. Oh, H. D. Kim, G. M. Kim and J. H. Hong, J. Kor. Inst. Met. & Mater. 38, 466 (2000)
40 K. Suzuki, J. Nucl. Mater. 108&109, 443 (1982)   DOI   ScienceOn
41 K. Wallin, Eng. Frac. Mech. 19, 1085 (1984)   DOI   ScienceOn