• Title/Summary/Keyword: V 모델

Search Result 1,402, Processing Time 0.03 seconds

A Study on the Improvement of Marine Pollution Response Education Program of Korea Coast Guard Academy - Focusing on Comparison between Domestic and Foreign Curriculums - (해양경비안전교육원 해양오염방제교육 프로그램 개선에 관한 연구 - 유류오염 방제 교육과정에 대한 국내외 비교를 중심으로 -)

  • Choi, Hyun Kue
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.365-375
    • /
    • 2017
  • Approximately 250 marine pollution accidents involving oil and HNS spills are reported every year in the Republic of Korea. It is necessary that a strengthen of specialization of marine pollution response personnel on marine pollution response due to a diminution of damage when a major oil and HNS spill incident occurred, as in the case of the M/V Heibei Spirit and the M/V Maritime Maisie. In regard to this, the International Maritime Organization (IMO) has planned to revise the OPRC Model Training Course to strengthen expertise for oil spill incident responses. Through a comparison of curriculum with the Korea Coast Guard Academy (KCGA) program, a revised IMO Model Course and the OSRL training institute, this study recommends the following improvements for the education program of the KCGA in response to oil spills. This study suggests several options in line with this approach to revise the oil spill response education curriculum, exercise, discussions and making materials. Accreditation of the KCGA as an institute that provides an IMO Model training course developed according to the revised IMO Model Course material is proposed.

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

Health Impact Assessment on Construction of Landfill Site - Focused on Human Risk Assessment due to Inhalation Exposure to Landfill Gas - (매립장 조성사업에 대한 건강영향평가 - 매립가스의 호흡노출로 인한 인체위해성평가를 중심으로 -)

  • Kim, Young-Ha;Lee, Young-Soo
    • Journal of Environmental Policy
    • /
    • v.7 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • The Ministry of Environment(MoE) of Korea has recently established the Environmental Health Act. This Act contains a clause related to implementation of Health Impact Assessment(HIA). So, selecting a landfill which was expected to have an influence on human health among major development projects, this study carried out the human risk assessment due to inhalation exposure to landfill gas emission and attempted to measure the possibility of domestic application of HIA in the future. The process for HIA on landfill site extension focusing on human risk assessment is as follows: The first step is to presume and calculate the amount of landfill gas emissions using LandGEM, The second step is to carry out exposure assessment using K-SCREEN Model which is used for predicting the concentration in a conservative method. The last step is to carry out human risk assessment of carcinogenic and non-carcinogenic substances. It is considered that it is likely to apply a technique for human risk assessment due to inhalation exposure to landfill gas emission performed here more specifically in the case of implementing HIA. In addition, it is also believed that more systematic studies are needed to overcome some weak points and limits found in this study and if these weak points and limits are improved more reliable outcomes will be produced.

  • PDF

Estimated Additional Number of Workers and Additional Collective Dose by Reducing Dose Limits (선량한도 하향이 방사선작업인력 및 집단선량에 미치는 영향예측)

  • Ha, Chung-Woo;Na, Seong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 1998
  • An analysis has been performed to estimate the additional number of workers and the additional collective dose in man-cSv which would be required, nuclear industry-wide as a result of reducing individual dose limit. This analysis can be extended to the reduction in the dose limits recommended by ICRP Publ.60 and BEIR V report as well as the proposed dose limits by regulatory authorities. An industry-wide database was employed in the analysis based on a summary of industry-wide occupational radiation exposure compiled by the Korea Radioisotope Association. Correlation model was employed to compute the affects of setting specific annual individual dose limits. In this study, we have addressed worker non-productivity while in the radiation environment on a parametric or 'sensitivity analysis' basis. This alleviates the need for developing such data underlying a summation of many individual tasks at many nuclear facilities. It has the advantage that very low non-productivity assumptions can readily be defended as conservative, in that it is difficult to approach such low worker non-productivity factors even in the best of environments in any industry. On a per facility basis, for calendar year 1997, the number of workers required would be increased from 231 workers to 269 workers and collective man-cSv dose would be also increased by approximately fourteen percent if the individual dose limit was reduced to 2 cSv/y and an individual worker non-productivity fraction of 0.1 is assumed.

  • PDF

Analysis of the Dead Layer Thickness effect and HPGe Detector by Penelope Simulation (Penelope Simulation에 의한 불감층 두께 효과 및 HPGe 검출기 분석)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.801-806
    • /
    • 2018
  • Germanium crystals have a dead layer that causes efficiency deterioration because the layer is not useful for detection but strongly weakens the photons. Thus, when the data provided by the manufacturer is used in the detector simulation model, there is a slight difference between the calculated efficiency and the measured efficiency.The shape and dimensions of the high purity germanium (HPGe) detector were determined by CT scans to accurately characterize the shape for the Monte Carlo roll simulation. It is found that the adjustment of the dead layer is a good match with the relative deviation of ${\pm}3%$ between the measurement efficiency and the simulation efficiency at the energy range of 50 - 1500 keV. Simulation data were compared by varying the thickness of the dead layer. The new Monte Carlo simulations were compared with the experimental results to obtain new blank layer thicknesses. The difference in dead layer results for the 1.5 mm thick end cap simulation model in 1.4 and 1.6 mm thick End Cap simulation models was a systematic error due to the accuracy of the end cap dimensions. After considering all errors including statistical errors and systematic errors, the thickness of the detector was calculated as $1.02{\pm}0.14mm$. Therefore, it was confirmed that the increase in the thickness of the dead layer causes the effect to be effected on the efficiency reduction.

Stiffness Improvement of Timing Belt in Power Transmission (동력전달용 타이밍벨트의 강성 개선)

  • Lee, Kyeong-Yeon;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As a power transmission element, the timing belt is a toothed transmission belt that takes advantages of V-belts and gears. It has characteristics of non-slip and low noise. It is used as a power transmission device when transmitting power from a rotating shaft or linear motion in a mechanism. Rotation can be accurately transmitted through a belt pulley with grooves like a gear and a timing belt with grooves to precisely match with the belt pulley. In particular, in the mechanism in which the timing belt is used for the output shaft, the dynamic characteristics including the rigidity of the timing belt determine the transmission characteristics of the system, so its importance increases. In this paper, a stiffness reinforced belt that can be applied to a timing belt with a limited range of motion to increase its stiffness is proposed. To study the dynamic characteristics of the stiffness reinforced belt, the equation of motion for the stiffness reinforced belt was established, and a simulation model for the stiffness reinforced belt was created and analyzed. In order to confirm the analysis results of the motion equation and simulation model, a 1-axis rotation experimental equipment using a stiffness reinforcing belt was developed and the experiment was conducted. Through motion equations, simulation models, and experiment results, it was confirmed that the stiffness and dynamic characteristics of the timing belt could be improved by applying the proposed stiffness reinforcement belt.

Numerical modeling of tidal discharge through a permeable dyke from varying surface gradients (내·외 수위차를 이용한 투수성 제체의 조류량 모델링)

  • Hong, Seong Soo;Kim, Tae In;Nguyen, Thao Thi Hoang;Gu, Jeong Bon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.219-219
    • /
    • 2021
  • 서해안 중부 아산만 안쪽에 위치하는 평택·당진항에서 장래 개발 예정인 면적 6.9km2의 내항2공구 수역은 내항2공구 외곽호안 - 내항가호안 - 내항2공구 중앙 분리호안으로 둘러싸여 있으며, 투수성 제체인 내항가호안 사석 공극을 통하여 해수가 유통되어 조석 현상이 나타나고 있다. 2020년 8~9월의 2개월간 내항2공구 외곽호안 내·외측에서 조석 관측 결과, 2공구 수역의 최대 조차는 1.97m로서 외측 해역 최대 조차 9.79m의 20.1%이고 내·외측의 순간 수위차는 최대 5.82m에 달한다. 내항가호안은 내항2공구 개발이 거의 완료되는 시기까지 유지될 예정이므로 2공구 개발에 따른 내측 조차와 내·외측 수위차의 변화를 정확하게 예측하는 것은 내항가호안 제체 안전에 매우 중요하다. 이 연구의 목적은 장래 개발단계별 변화 예측에 앞서, 관측이 이루어진 2개월간의 실시간 내측 조석과 내·외측 수위차 시계열을 Delft3D-Flow를 이용하여 기 구축된 아산만 수치모델에서 재현하는 것이다. 내항가호안 제체 통과 유량은 내·외측 수위차에 비례하는 것으로 가정하고, 수위차 - 유량 관계식을 도출하였다. 수위차는 평택 조위관측소와 내항2공구 수역의 1분 간격 관측 조위로부터 산출하였고, 제체 통과 유량은 내측 조위(z, 평택항 DL 기준, m) - 수용적(V, 106m3) 관계식으로 계산하였다. 내측 조위 - 수용적 관계식은 수심측량 성과로부터 V = 0.28z2 + 3.73z + 2.96 (r2=1.00)으로 얻어졌다. 다양한 함수식의 적합성을 검토한 결과, 다음과 같은 수위차(𝚫z, m) - 제체 통과 유량(Q, m3/s) 관계식을 도출하였다. [내항가호안 내측으로 유입시] $Q_{IN}=\{\begin{array}{lll}{\exp}\{0.54\;{\ln}({\Delta}z)+6.00\}&&\text{; }{\Delta}z{\leq}1.8\\219.82{\Delta}z+158.56&&\text{; }{\Delta}z>1.8\end{array}\;\;(r^2=0.86)$ [내항가호안 외측으로 유출시] QOUT = -exp{0.44 ln(-𝚫z) + 5.70} (r2=0.59) 매 𝚫t 마다 제체 통과 유량을 계산하는 알고리즘을 Delft3D 소스 코드에 추가하고, 8개 분조 합성조석(M2, S2, K1, O1, N2, K2, P1, Q1)을 외력조건으로 설정하여 2개월간 조석 수치모델링을 수행하였다. 내항2공구 수역의 매 시별 조위 관측치와 모델치를 비교한 결과, 오차는 -0.37~0.37m의 범위이고, 오차 평균은 0.02m, 절대오차 평균은 0.08m로 상당히 정확하게 실시간 조위 변동을 모의하였다. 보정·검정된 이 모델을 이용하여 향후 내항2공구 개발에 따른 내측 조석과 내·외측 수위차 변화에 대한 예측모의를 진행할 예정이다.

  • PDF

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.

Database Construction to Compute Representative Model of Load Power Factor in Bulk Power System (대규모 전력계통의 부하역률 대표모델 산정을 위한 데이터베이스 구축)

  • Cho, Jong-Man;Lee, Hyo-Sang;Lee, Jung-He;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.83-89
    • /
    • 2004
  • The importance of the Load Power Factor(LPF) management is newly noticed from the voltage management and operation of the power system due to the rapidly increasing reactive power consumed. Therefore, this paper proposes the regional, seasonal and hourly Representative Model of Load Power Factor(RMLPF) considering load characteristics of all 154/22.9[kV] substations. The RMLPF is used to present a precision improvement of power system analysis and security. Computation of representative model of load utilizes the average flow method based on moving average method. The Energy Management System(EMS) data are used as the source to assess the load power factor.

Comparison of Deep Beam Designed by Two Models of STM and ACI Traditional (깊은 보의 스트럿-타이 모델과 고전적인 방법의 설계 비교)

  • Lymei, Uy;Son, Byung-Jik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.8-14
    • /
    • 2013
  • Deep beam shall be designed either by taking into account nonlinear distribution of strain or by Appendix A of Strut-and-Tie Models (STM) according to ACI 318(M) from version of 2002. Although STM is accepted as tool in design Discontinuity region (D-region) which mostly exist in Deep beam, Corbels, Dapped ends etc., it has been modified by many researchers. In this study we design deep beam by STMs which use simple truss for load distribution and the model of complex truss for load distribution compare with the ACI traditional which is designed by flexure design method and shear provided by concrete($V_c$) as provided in special provisions section of 11.8 in ACI 318-99 [1]. This study aims to find the different and efficiency of deep beam design based on variation of parameter compiled from many samples selected from ACI traditional and two model of STMs, simple and complex load distribution.