• Title/Summary/Keyword: Using Smart Factory

Search Result 233, Processing Time 0.023 seconds

Development of Edge Cloud Platform for IoT based Smart Factory Implementation

  • Kim, Hyung-Sun;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.49-58
    • /
    • 2019
  • In this paper, we propose an edge cloud platform architecture for implementing smart factory. The edge cloud platform is one of edge computing architecture which is mainly focusing on the efficient computing between IoT devices and central cloud. So far, edge computing has put emphasis on reducing latency, bandwidth and computing cost in areas like smart homes and self-driving cars. On the other hand, in this paper, we suggest not only common functional architecture of edge system but also light weight cloud based architecture to apply to the specialized requirements of smart factory. Cloud based edge architecture has many advantages in terms of scalability and reliability of resources and operation of various independent edge functions compare to typical edge system architecture. To make sure the availability of edge cloud platform in smart factory, we also analyze requirements of smart factory edge. We redefine requirements from a 4M1E(man, machine, material, method, element) perspective which are essentially needed to be digitalized and intelligent for physical operation of smart factory. Based on these requirements, we suggest layered(IoT Gateway, Edge Cloud, Central Cloud) application and data architecture. we also propose edge cloud platform architecture using lightweight container virtualization technology. Finally, we validate its implementation effects with case study. we apply proposed edge cloud architecture to the real manufacturing process and compare to existing equipment engineering system. As a result, we prove that the response performance of the proposed approach was improved by 84 to 92% better than existing method.

A System Architecture for Facility Fault Diagnosis and Repair Action in Smart Factory (스마트 팩토리에서 설비 장애 진단 및 조치 시스템 구조)

  • Cho, Jaehyung;Lee, Jaeoh
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2020
  • Recently, a research on a smart factory was developed from a concept of factory automation(FA) to the formation of collecting and analyzing data. This trend is accelerated as the development of communication technology(5G) and IoT devices are developed in various ways according to the field situation. In addition, digital transformation has been actively conducted in the strengthening corporate competitiveness, and various optimization studies are being conducted through process re-adjustment by combining data received from various IoT equipment and automated facilities. Therefore, in this paper, we propose a system architecture and its related components in diagnosing and repairing facility failure using a prediction system which is one of the related researches.

Factors that Drive the Adoption of Smart Factory Solutions by SMEs

  • Namjae Cho;Soo Mi Moon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.5
    • /
    • pp.41-57
    • /
    • 2023
  • This paper aims to analyse the factors influencing the implementation of smart factories and their performance after implementation, using the grounded theory analysis method based on interview data. The research subjects were 21 companies that were selected by the Smart Manufacturing Innovation Promotion Group under the SME Technology Information Promotion Agency in 2020-2021 as the best case smart factory implementation companies, and introduced the intermediate stage 1 or above. A total of 87 concepts were generated as a result of the analysis. We were able to classify them into 16 detailed categories, and finally derived six broad categories. These six categories are "motivation for adoption", "adoption context", "adoption level", "technology adoption", "usage effect" and "management effect". As a result of the overall structure analysis, it was found that the adoption level of smart factory is determined by the adoption motivation, the IT technology experience affects the adoption level, the adoption level determines the usage and usage satisfaction, internal and external training affects the usage and usage satisfaction, and the performance or results obtained by the usage and usage are reduced defect rate, improved delivery rate and improved productivity. This study was able to derive detailed variables of environmental factors and technical characteristics that affect the adoption of smart factories, and explore the effects on the usage effects and management effects according to the level of adoption. Through this study, it is possible to suggest the direction of adoption according to the characteristics of SMEs that want to adopt smart factories.

A Study on Fuzzy Logic Based Intelligent Control of Robot System to Improve the Work Efficiency for Smart Factory

  • Kim, Hee-Jin;Kim, Dong-Ho;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.645-658
    • /
    • 2021
  • In this paper, we propose a new approach to intelligent control based on fuzzy logic for work efficiency improvement of smart factory by the applicaion of ariticulated robot. The intelligent control that is applied to the working process by the joint of robotic manipulator is the main focus to improve a work efficiency for implimentation of smart factory in general manufacturing process. In this study, we propose a new method of a fuzzy model and then develop a nonlinear relationship between interaction forces and manipulator position using a fuzzy model. The reliability of the proposed control method is illustrated by simulation and experiments.

The Influencing Mechanism of Manufacturing SMEs' Smart Factory Advancement Acceptance Intention: Based on the Information Systems Success Model (중소제조기업의 스마트팩토리 고도화수용의도 영향 메커니즘: 정보시스템 성공모형을 기반으로)

  • Yoon Jae Kim;Chang-Geun Jeong;Sung-Byung Yang
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.199-220
    • /
    • 2023
  • Projects to deploy and diffuse smart factories in South Korea are aimed at enhancing national manufacturing competitiveness. However, a significant portion of deployed companies remain at the basic stage and struggle to utilize smart factories regularly. Existing studies have primarily focused on the technical aspects of smart factories, using data analytics and case studies, leading to a gap in empirical research on continuous use and upgrade intentions. This study identifies key factors influencing smart factory usage and user satisfaction, drawing on the Information Systems Success Model (ISSM) and previous research. It empirically examines the impact of these factors on continuous use intention, management performance, and advancement acceptance intention through smart factory usage and user satisfaction. A structural equation model is employed to validate the research hypotheses, using survey data from 287 small and medium-sized manufacturing enterprises (SMEs) that have adopted smart factories. Results demonstrate that system quality, information quality, service quality, and government support significantly affect smart factory usage, while service quality and government support influence user satisfaction. Furthermore, smart factory usage and user satisfaction have positive effects on management performance, continuous use intention, and subsequently advancement acceptance intention. This study provides novel insights by demonstrating the specific impact mechanisms of smart factory user satisfaction on the business and the intentions of manufacturing SMEs regarding continuous use and advancement acceptance, leveraging the ISSM.

Development of Digital Twin platform using Smart Factory based CPPS (스마트팩토리 기반 CPPS를 활용한 Digital Twin 플랫폼 개발)

  • Lee, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.305-307
    • /
    • 2021
  • In this paper, we propose a study related to the development of a Digital-Twin platform using a smart factory based CPPS (Cyber Pysical Production System) using ICT (Information Communication Technology) technology. The platform developed through this study performs a 3D model simulation function in conjunction with P3R (Product, Process, Plant, Resource) including BOP (Bill of Process) management function from the preceding manufacturing process planning stage. In addition, we propose a digital twin platform that can predict production processes, equipment, layout, and production. The platform proposed through this paper proposes a feature that can manage the entire smart factory manufacturing process from the initial planning design stage to the manufacturing, production, operation, and maintenance stages.

  • PDF

Implementation of a Gesture Recognition Signage Platform for Factory Work Environments

  • Rho, Jungkyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2020
  • This paper presents an implementation of a gesture recognition platform that can be used in a factory workplaces. The platform consists of signages that display worker's job orders and a control center that is used to manage work orders for factory workers. Each worker does not need to bring work order documents and can browse the assigned work orders on the signage at his/her workplace. The contents of signage can be controlled by worker's hand and arm gestures. Gestures are extracted from body movement tracked by 3D depth camera and converted to the commandsthat control displayed content of the signage. Using the control center, the factory manager can assign tasks to each worker, upload work order documents to the system, and see each worker's progress. The implementation has been applied experimentally to a machining factory workplace. This flatform provides convenience for factory workers when they are working at workplaces, improves security of techincal documents, but can also be used to build smart factories.

Enhancing Productivity and Quality in Korean Modular Housing through Smart Factory Integration

  • Youngwoo, KIM;Sunju, KIM
    • The Journal of Economics, Marketing and Management
    • /
    • v.12 no.4
    • /
    • pp.13-25
    • /
    • 2024
  • Purpose: Korea's construction industry has faced declining productivity and quality issues due to labor-intensive onsite construction and variables like weather, material price fluctuations, and labor shortages. The modular housing industry, introduced in Korea in 2003, offered benefits like reduced construction time and enhanced productivity through offsite manufacturing. However, its adoption remains limited due to high costs, quality concerns, and low consumer acceptance. Research Design, Data, and Methodology: This study explores the feasibility and impact of implementing smart factory technologies in the modular housing industry to overcome these barriers. Using survey data from 179 construction industry experts, the study employs frequency and regression analysis to identify key factors influencing the adoption of modular housing and the effectiveness of smart factories. Findings suggest that government-led educational programs and strong policy support are essential for successful implementation, enhancing productivity, reducing costs, and improving quality. Conclusions: The study emphasizes the need for standardization of modular housing, deregulation of relevant laws, and increased public awareness to stimulate market growth and innovation. Policy recommendations include financial support for modular manufacturers transitioning to smart factories, ensuring stable supply volumes, and promoting the benefits of modular housing to consumers. Integrating smart factory technologies can lead to significant advancements in the modular housing industry, contributing to the sustainable development and modernization of Korea's construction sector.

A Study on the Perception of Fashion Platforms and Fashion Smart Factories using Big Data Analysis (빅데이터 분석을 이용한 패션 플랫폼과 패션 스마트 팩토리에 대한 인식 연구)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.799-809
    • /
    • 2021
  • This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.

Investigating Key Security Factors in Smart Factory: Focusing on Priority Analysis Using AHP Method (스마트팩토리의 주요 보안요인 연구: AHP를 활용한 우선순위 분석을 중심으로)

  • Jin Hoh;Ae Ri Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.185-203
    • /
    • 2020
  • With the advent of 4th industrial revolution, the manufacturing industry is converging with ICT and changing into the era of smart manufacturing. In the smart factory, all machines and facilities are connected based on ICT, and thus security should be further strengthened as it is exposed to complex security threats that were not previously recognized. To reduce the risk of security incidents and successfully implement smart factories, it is necessary to identify key security factors to be applied, taking into account the characteristics of the industrial environment of smart factories utilizing ICT. In this study, we propose a 'hierarchical classification model of security factors in smart factory' that includes terminal, network, platform/service categories and analyze the importance of security factors to be applied when developing smart factories. We conducted an assessment of importance of security factors to the groups of smart factories and security experts. In this study, the relative importance of security factors of smart factory was derived by using AHP technique, and the priority among the security factors is presented. Based on the results of this research, it contributes to building the smart factory more securely and establishing information security required in the era of smart manufacturing.