• Title/Summary/Keyword: Useful Workspace

Search Result 29, Processing Time 0.023 seconds

Motion Planning for Legged Robots Using Locomotion Primitives in the 3D Workspace (3차원 작업공간에서 보행 프리미티브를 이용한 다리형 로봇의 운동 계획)

  • Kim, Yong-Tae;Kim, Han-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps of the 3D workspace is proposed. A global navigation map is obtained using 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.

  • PDF

Analysis on Kinematic Characteristics of the Revolute-joint-based Translational 3-DOF Parallel Mechanisms (회전관절만을 활용하는 병진 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Park, Jae-Hyun;Kim, Sung Mok;Kim, WheeKuk
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.119-132
    • /
    • 2015
  • Two novel parallel mechanisms (PMs) employing two or three PaPaRR subchains are suggested. Each of those two PMs has translational 3-DOF motion and employs only revolute joints such that they could be adequate for haptic devices requiring minimal frictions. The position analyses of those two PMs are conducted. The mobility analysis, the kinematic modeling, and singularity analysis of each of two PMs are performed employing the screw theory. Then through optimal kinematic design, each of two PMs has excellent kinematic characteristics as well as useful workspace size adequate for haptic applications. In particular, by applying an additional redundantly actuated joint to the 2-PaPaRR type PM which has a closed-form position solution, it is shown that all of its parallel singularities within reachable workspace are completely removed and that its kinematic characteristics are improved.

Gait Estimation System for Leg Diagnosis and Rehabilitation using Gyroscopes (하지 진단 및 재활을 위한 각속도계 기반 측정시스템)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.866-871
    • /
    • 2010
  • Gait analysis is essential for leg diagnosis and rehabilitation for the patients, the handicapped and the elderly. The use of 3D motion capture device for gait analysis is very common for gait analysis. However, this device has several shortcomings including limited workspace, visibility and high price. Instead, we developed gait estimation system using gyroscopes. This system provides gait information including the number of gaits, stride and walking distance. With four gyroscope (one for each leg's thigh and calf) outputs, the proposed gait modeling estimates the movements of the hip, the knees and the feet. Complete pedestrian localization is implemented with gait information and the heading angle estimated from the rate gyro and the magnetic compass measurements. The developed system is very useful for diagnosis and the rehabilitation of the pedestrian at the hospital. It is also useful for indoor localization of the pedestrians.

Visualization and Workspace Analysis of Manipulator using the Input Device in Virtual Environment (가상 환경에서 입력장치를 이용한 매니퓰레이터의 작업영역 분석 및 시각화)

  • Kim Sung Hyun;Song Tae Gil;Yoon Ji Sup;Lee Geuk
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • To handle the high level radioactive materials such a spent fuel, the master-slave manipulaters (MSM) are wide1y used as a remote handling device in nuclear facilities such as the hot cell with sealed and shielded space. In this paper, the Digital Mockup which simulates the remote operation of the Advanced Conditioning Process(ACP) is developed. Also, the workspace and the motion of the slave manipulator, as well as, the remote operation task should be analyzed. The process equipment of ACP and Maintenance/Handling Device are drawn in 3D CAD model using IGRIP. Modeling device of manipulator is assigned with various mobile attributes such as a relative position, kinematics constraints, and a range of mobility. The 3D graphic simulator using the extermal input device of spare ball displays the movement of manipulator. To connect the exterral input device to the graphic simulator, the interface program of external input device with 6 DOF is deigned using the Low Level Tele-operation Interface(LLTI). The experimental result show that the developed simulation system gives much-improved human interface characteristics and shows satisfactory reponse characteristics in terms of synchronization speed. This should be useful for the development of work`s education system in the environment.

  • PDF

Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory (힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습)

  • Kwon, Woo Young;Ha, Daegeun;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

Individual Control over the Physical Work Environment to Affect Creativity

  • Samani, Sanaz Ahmadpoor;Rasid, Siti Zaleha Binti Abdul;Sofian, Saudah Bt
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.94-103
    • /
    • 2015
  • The purpose of this paper is to provide a review of the background information regarding to the impact of personal control over the physical work environment on satisfaction with work environment and creativity at work. Today creativity has a significant and special place in business especially in innovative organizations which need creative people to generate new, and useful ideas for produce new products, services, work methods, systems etc. Moreover the design and appearance of workspace and individual ability to control the ambient conditions of the workplace have significant effect on their behavior, satisfaction and overall outcome including creativity. So the result of this study will contribute towards enhancing the understanding of the effect of office design to enhance employees' creativity.

A Guideline Tracing Technique Based on a Virtual Tracing Wheel for Effective Navigation of Vision-based AGVs (비전 기반 무인반송차의 효과적인 운행을 위한 가상추적륜 기반 유도선 추적 기법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.539-547
    • /
    • 2016
  • Automated guided vehicles (AGVs) are widely used in industry. Several types of vision-based AGVs have been studied in order to reduce cost of infrastructure building at floor of workspace and to increase flexibility of changing the navigation path layout. A practical vision-based guideline tracing method is proposed in this paper. A virtual tracing wheel is introduced and adopted in this method, which enables a vision-based AGV to trace a guideline in diverse ways. This method is also useful for preventing damage of the guideline by enforcing the real steering wheel of the AGV not to move on the guideline. Usefulness of the virtual tracing wheel is analyzed through computer simulations. Several navigation tests with a commercial AGV were also performed on a usual guideline layout and we confirmed that the virtual tracing wheel based tracing method could work practically well.

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

The role of cap-assisted endoscopy and its future implications

  • Sol Kim;Bo-In Lee
    • Clinical Endoscopy
    • /
    • v.57 no.3
    • /
    • pp.293-301
    • /
    • 2024
  • Cap-assisted endoscopy refers to a procedure in which a short tube made of a polymer (mostly transparent) is attached to the distal tip of the endoscope to enhance its diagnostic and therapeutic capabilities. It is reported to be particularly useful in: (1) minimizing blind spots during screening colonoscopy, (2) providing a constant distance from a lesion for clear visualization during magnifying endoscopy, (3) accurately assessing the size of various gastrointestinal lesions, (4) preventing mucosal injury during foreign body removal, (5) securing adequate workspace in the submucosal space during endoscopic submucosal dissection or third space endoscopy, (6) providing an optimal approach angle to a target, and (7) suctioning mucosal and submucosal tissue with negative pressure for resection or approximation. Here, we review various applications of attachable caps in diagnostic and therapeutic endoscopy and their future implications.

Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation (천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.