Journal of the Korean Society for Industrial and Applied Mathematics
/
v.27
no.4
/
pp.324-341
/
2023
Topological data analysis (TDA) is a data analysis technique, recently developed, that investigates the overall shape of a given dataset. The mapper algorithm is a TDA method that considers the connectivity of the given data and converts the data into a mapper graph. Compared to persistent homology, another popular TDA tool, that mainly focuses on the homological structure of the given data, the mapper algorithm is more of a visualization method that represents the given data as a graph in a lower dimension. As it visualizes the overall data connectivity, it could be used as a prediction method that visualizes the new input points on the mapper graph. The existing mapper packages such as Giotto-TDA, Gudhi and Kepler Mapper provide the descriptive mapper algorithm, that is, the final output of those packages is mainly the mapper graph. In this paper, we develop a simple predictive algorithm. That is, the proposed algorithm identifies the node information within the established mapper graph associated with the new emerging data point. By checking the feature of the detected nodes, such as the anomality of the identified nodes, we can determine the feature of the new input data point. As an example, we employ the fraud credit card transaction data and provide an example that shows how the developed algorithm can be used as a node prediction method.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.2
/
pp.143-161
/
2022
This study examines the effect of used trading app's consumption value and protection motivation and the perceived usefulness and continuous use intention. The proposed research model and developed hypotheses were tested using structural equations modeling based on data collected from 293 customers with experience in used transaction app's. The results of the study confirm the positive effects of the used trading app's consumption value and protection motive theory is perceived usefulness of customer. In addition, there is a positive relationship between a customer's perceived usefulness and continuous use intention of used trading app's. The study provides On a theoretical level valuable insights into the sustainability of transaction app's after post-COVID 19 and the importance of developing used trading app's consumption value and protection motivation, but there is also a limitation that the region is limited.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.11C
/
pp.1064-1073
/
2002
In this paper, we design and implement the Wireless Transaction Protocol (WTP) proposed by the Wireless Application Protocol (WAP) forum using a protocol development tool, SDL Development Tool (SDT). And we conduct a comparative performance evaluation of the WTP implementation with other three implementations that are based on different implementation models respectively: the server model, the coroutine model, and the activity-thread model. To implement WTP, we first use Unified Modeling Language (UML) for analyzing the protocol requirement and defining the protocol engine architecture. Next, we use Software Development Language (SDL) to design the protocol engine in details and then generate the WTP implementation automatically with the aid of SDT The code size of the WTP implementation generated by SDT is 62% larger than the other three implementations. However, its throughput and system response time for transaction processing is almost equal to the other three implementations when the number of concurrent clients is less than 3,000. If more than 5,000 concurrent clients tries, the transaction success rate abruptly decreases to 10% and system response time increases to 1,500㎳, due to the increased protocol processing time. But, it comes from the fact that the load overwhelms the capacity of the PC resource used in this experimentation.
The 2PL-HP(Two Phase Locking with High Priority) method has been used to guarantee preceding process of a high priority transaction(HPT) in real-time database systems. The method resolves a conflict through aborting or blocking of a low priority transaction(LPT). However, if HPT is eliminated in a system because of its deadline missing, an unnecessary aborting or blocking of LPT is occurred. Recently, to resolve the problem, a concurrency control algorithm using alternative version was proposed. However, the algorithm must always create the alternative version and needs an addtional technique to manage complex alternative versions. In this paper, we propose an efficient concurrency control algorithm that prevents needless wastes of resources and eliminates unnecessary aborting or blocking of LTP. And it is shown through the performance evaluation that the proposed concurrency control algorithm outperforms the existing concurrency control algorithm using alternative version.
Purpose: The franchise system started by Singer Sewing Machine in the US is acting as a national economic growth engine in terms of job creation and economic growth. In China, the franchise system was introduced in the mid-1980s. And since joining the WTO, it has grown by 5-6% every year. However, compared to the growth rate of franchises, studies on shared growth between the chain headquarters and franchisees were insufficient. Accordingly, recent studies related to shared growth between the chain headquarters and franchisees have been active in China. The purpose of this study is to examine the knowledge transfer system between the knowledge creation, knowledge sharing, and the use of knowledge by franchise chain headquarters in China. In addition, the relationship between franchise satisfaction and performance is identified. Research design, data, and methodology: The data were collected from franchise stores in Sichuan, China, and were conducted with the help of ○○ Incubation, a Sichuan Province-certified incubator. From November 2020 to January 2021, 350 copies of the questionnaire were distributed in China, and 264 copies were returned. Of these, 44 copies with insincere answers and response errors were excluded, and 222 copies were used for analysis. The data were analyzed with SPSS 22.0 and AMOS 22.0 statistical packages. Result: The results of this study are as follows. First, knowledge creation has been shown to have a statistically significant impact on knowledge sharing and knowledge utilization. In particular, the effectiveness of knowledge creation was higher in knowledge sharing than in knowledge utilization. And we can see that knowledge sharing also has a statistically significant e ffect on knowledge utilization. Second, knowledge sharing was not significant for transaction satisfaction and business performance, and knowledge utilization was significant for transaction satisfaction and business performance. These results can be said to mean less interdependence of the Chinese franchise system. Finally, transaction satisfaction was statistically significant to business performance. The purpose of this study was to examine the importance of knowledge management to secure long-term competitive advantage for Chinese franchises. This study shows that knowledge sharing is important for long-term franchise growth. And we can see that there is a lack of knowledge sharing methods in the case of franchises in China. I n addition, it was found that the growth of Chinese franchises requires systematization of communication, information sharing measures and timing, help from chain headquarters, and mutual responsibility awareness.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.13
no.6
/
pp.590-596
/
2020
In the island areas where system connection with the commercial power grid is difficult, it is quite important to find a method to efficiently manage energy produced with independent microgrids. In this paper, a prosumer management system for P2P power transaction was realized through the testing the power meter and the response rate of the collected data for the power produced in the small-scale microgrids in which hybrid models of solar power and wind power were implemented. The power network of the microgrid prosumer was composed of mesh structure and the P2P power transaction was tested through the power meter and DC power transmitter in the off-grid sites which were independently constructed in three places. The measurement values of the power meter showed significant results of voltage (average): 380V + 0.9V, current (average): + 0.01A, power: 1000W (-1W) with an error range within ±1%. Stabilization of the server was also confirmed with the response rate of 0.32 sec. for the main screen, 2.61 sec. for the cumulative power generation, and 0.11 sec for the power transaction through the transmission of 50 data in real time. Therefore, the proposed system was validated as a P2P power transaction system that can be used as an independent network without transmitted by Korea Electric Power Corporation (KEPCO).
Journal of the Korea Society of Computer and Information
/
v.29
no.7
/
pp.169-179
/
2024
Currently, information technologies such as blockchain and metaverse are being innovatively developed in Korea and around the world. The government has defined the innovation of these cyber-related technologies as the fourth industrial revolution and presented the Digital New Deal as an important policy of the Korean version of the New Deal, and is implementing various policies and systems related to it. This situation is expected to affect the development of the real estate registration system in Korea. Moreover, as the Supreme Court is currently promoting the transition to a future registration system, it is necessary to examine whether blockchain technology, which allows parties to exchange value without a third party guaranteeing the transaction, can be used in the real estate registration system. In order to secure the credibility of the real estate registration as electronic information under the registration system that introduces electronic registration and blockchain system, the transparency of transaction identification and real estate registration details should also be recorded using the blockchain system as a way to prevent such crimes and legal disputes. As a solution, it is worth considering how to improve the reliability of transaction identification, recognize the actual examination rights of the registrar in the foundation system of the real estate register, and increase public trust by going through the notarization stage when recording rights such as real rights, and consider how to introduce a blockchain system at this stage to ensure integrity and reliability. In the stage before the current real estate registration and study system is converted to a blockchain system, the clarity, transparency, and consistency of the real estate registration entries with the actual real estate must be established so that the real estate study can finally be recognized as authoritative, thereby ensuring the trust of the transaction parties to the real estate study system that has adopted the blockchain system in the future, and bringing us closer to the goal of real estate transactions in the form of smart contracts between the parties who have trusted it based on transparency and integrity of real estate study in the real estate transaction market.
Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.
Main-Memory DataBase(MMDB) system where all the data reside on the main memory shows tremendous performance boost since it does not need any disk access during the transaction processing. Since MMDB still needs disk logging for transaction commit, it has become another bottleneck for the transaction throughput and the commit protocol should be examined carefully. There have been several attempts to reduce the logging overhead. The pre-commit and group commit are two well known techniques which do not require additional hardware. However, there has not been any research to analyze their effect on MMDB system. In this paper, we identify the possibility of deadlock resulting from the group commit and propose the disk group commit protocol which can be readily deployed. Using extensive simulation, we have shown that the group commit is effective on improving the MMDB transaction performance and the proposed disk group commit almost always outperform carefully tuned group commit. Also, we note that the pre-commit does not have any effect when used alone but shows some improvement if used in conjunction with the group commit.
Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.