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ABSTRACT. Topological data analysis (TDA) is a data analysis technique, recently developed,
that investigates the overall shape of a given dataset. The mapper algorithm is a TDA method
that considers the connectivity of the given data and converts the data into a mapper graph.
Compared to persistent homology, another popular TDA tool, that mainly focuses on the ho-
mological structure of the given data, the mapper algorithm is more of a visualization method
that represents the given data as a graph in a lower dimension. As it visualizes the overall data
connectivity, it could be used as a prediction method that visualizes the new input points on the
mapper graph. The existing mapper packages such as Giotto-TDA, Gudhi and Kepler Mapper
provide the descriptive mapper algorithm, that is, the final output of those packages is mainly
the mapper graph. In this paper, we develop a simple predictive algorithm. That is, the pro-
posed algorithm identifies the node information within the established mapper graph associated
with the new emerging data point. By checking the feature of the detected nodes, such as the
anomality of the identified nodes, we can determine the feature of the new input data point.
As an example, we employ the fraud credit card transaction data and provide an example that
shows how the developed algorithm can be used as a node prediction method.

1. INTRODUCTION

Topological data analysis (TDA) is one of the most popularly studied data analysis tech-
niques these days. Unlike traditional statistical data analysis, TDA focuses more on the shape
of data. By examining the shape of data, important data characteristics, possibly overlooked
through traditional analysis, could be revealed [1].
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Persistent homology is a TDA technique that considers the homological structure of data
such as cyclic structure of the given data and visualizes the result as a diagram, e.g. persis-
tence barcode, persistence diagram, etc. Research of combining TDA and machine learning
centers around the usages of these barcodes and diagrams in the machine learning workflow
[2]. The typical procedure of persistent homology is to take the input data as a point cloud and
build the complex out of it via the so-called filtration procedure. Filtration procedure involves
the computation of homology at different scales and the final visualization is the collection of
the changes of homology through scales. Since the early works of persistent homology [3, 4],
various advanced methods have been developed and applied to various applications. The key
element of this method is to take the given data as a geometrical object, for which the given data
is transformed into a point cloud. Using the constructed point cloud the associated complex is
being built to imitate the original data. During the imitation procedure, important data char-
acteristics, e.g. homology, are computed. It is not straightforward to transform the given data
into a point cloud. For example, for time-series data, the sliding window embedding method
is a popular method to construct a point cloud out of the time-series data [5, 6]. Recently, a
direct method is also proposed that does not rely on the sliding window embedding but instead
uses the orthogonality of the Fourier bases on N -torus [7]. In [8], a 3D spherical projection is
proposed to efficiently project the 3D vascular flows as a point cloud suitable to TDA analysis.
However, there is no unified theory to determine the best transform towards the point cloud.
Rather, it highly depends on the given data. For this reason, it is important to understand well
the given data before applying TDA.

The mapper [9] algorithm is also a TDA technique that considers the shape of data. Unlike
persistent homology, explained briefly above, the mapper algorithm is more of a visualization
method. As explained above, the final visualization of persistent homology, e.g. persistence
diagram, is plugged into a machine learning workflow. However, the mapper visualization in a
machine learning context is less popular at the moment compared to persistent homology. The
mapper algorithm visualizes the given data as a mapper graph. That is, the mapper algorithm
defines the vertices and edges out of the data and constructs the graph. The original mapper idea
was proposed in [9] and there have been various developments since then. The main difference
between persistent homology and the mapper algorithm is that persistent homology focuses
more on the homology of the shape of data but the mapper algorithm focuses more on the shape
of the given data. For example, it is possible that the mapper algorithm could distinguish those
two homologically equivalent objects while those two datasets are categorized into the same
class with the persistent homology approach. In that sense, the mapper algorithm provides
more intuitive visualization of the given data towards interpretation. Here we note that for both
persistent homology and the mapper method it is necessary to properly transform the given
data into a point cloud. As stated in the above, though, the optimal transform may depend on
data.

In this work, we use the visualization characteristics of the mapper algorithm to develop a
node prediction algorithm. That is, we develop an algorithm that first identifies the nodes as-
sociated with the input data point within the considered mapper graph and then visualizes the
individual input data in the mapper graph. Popular mapper toolkits such as Giotto-TDA [10] do
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not provide the algorithm that maps the individual new input data into the already established
mapper graph domain. By utilizing this visualization, it is efficient to identify the connec-
tivity of the new data point within the overall mapper graph, which also makes it possible
to identify the features of the input data visually. The computational modules of the devel-
oped prediction algorithm are available at https://github.com/HiddenBeginner/
mapper_prediction/.

As a numerical example, we apply the prediction algorithm to the credit card fraud transac-
tion data and show how the prediction algorithm identifies the associated nodes with the input
data. For this example, we mainly focus on the supervised algorithm. That is, for the visual-
ization, we assume that we already have the knowledge about which points indicate the fraud
data.

This paper is composed of the following sections. In Section 2, we will provide the overall
description of the mapper algorithm. In this section, we use two well-known examples to help
the understanding. In Section 3, we propose a node prediction algorithm based on Giotto-TDA
and DBSCAN. In Section 4, we provide an application example of the developed prediction
algorithm using the credit card fraud transaction data. In Section 5, we provide a brief conclu-
sion. In Appendix A, we provide a partial code of the prediction algorithm that draws circles
around the identified nodes for the input data. In Appendix B, feature distributions of the credit
card transaction data are provided based on which the projection dimensions are determined
for the numerical experiments.

2. MAPPER ALGORITHM

2.1. Mapper algorithm. The mapper algorithm is a TDA method that visualizes the given
data defined in a high-dimensional space, in the form of a graph in a low-dimensional space.
There are various data visualization methods such as PCA (principle component analysis) [11]
and t-SNE (t-distributed stochastic neighbor embedding) [12] methods. These methods are
all dimensional reduction algorithms for high-dimensional datasets. Unlike these dimensional
reduction algorithms, the mapper algorithm uses the concept of graph and focuses on the con-
nectivity of the given data points. Below we explain how the mapper algorithm constructs the
graph out of the given data.

Suppose that a dataset is given and it is represented as a point cloud X and that X is com-
posed of N distinct data points, i.e. X = {xi | i = 1, . . . , N} ⊂ X where X is the underlying
topological space in which X is generated. Each xi could be a vector. As stated in the In-
troduction, the method of converting the provided data into a suitable point cloud X is not
unique. Indeed, identifying the ideal transform for the provided dataset is not a simple task; it
demands additional exploration of the data. The construction of a suitable point cloud for the
given data holds crucial importance in the success of TDA. For instance, in [8], vascular data
was projected onto a sphere, proving highly effective for TDA of vascular flow. Similarly, the
utilization of sliding window embedding for time-series data [5, 6] is another exemplary ap-
proach. One direct approach involves employing the identity map. The specifics of the mapper
algorithm may vary depending on the problems under consideration. However, in this paper,
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we adopt the conventional mapper algorithm [1]. For the mapper algorithm, numerous free
parameters need to be predefined, and the performance varies based on the selected parameter
values. A unified theory regarding the best parameter values for optimal performance is not
available. There are several approaches for parameter optimization [13].

Filter function: The mapper algorithm first defines the so-called lens or filter function f :
X → Y , where f is a continuous map and Y is typically defined in a dimension lower than that
of X . The filter function f is either given or to be defined depending on the problem. Suppose
that X and f are given, i.e. we have the sets of {xi} and {f(xi)}. If Y ⊂ R, it is convenient
to define the minimum and maximum of f(xi),

m := min
i=1,··· ,N

f(xi),

and
M := max

i=1,··· ,N
f(xi).

Then, m ≤ f(xi) ≤ M for i = 1, · · · , N . The values of m and M are used to determine the
size of the cover explained below.

Covering: Suppose that Y is equipped with a covering U = {Ui | i = 1, 2, · · · , r <
∞}, Y ⊂ ∪iUi. Here the adjacent Ui are supposed to overlap. Let r be the parameter that
determines the number of covers and p be the degree of overlapping as a probability such that
0 < p < 1. Practically p is chosen as 0 < p ≤ 1

2 . The choice of Ui is not unique. One can
use a uniform covering, that is, Ui are distributed uniformly with the same degree of overlap
for any two neighboring covers. For example, consider the case of Y ⊂ R and ∪iUi = (0, 2).
Choose r = 4 and p = 2

3 . Then each Ui is an interval Ii ⊂ U and the uniform covering is

U = {Ii} =
{
(0, 1),

(
1

3
,
4

3

)
,

(
2

3
,
5

3

)
, (1, 2)

}
.

The d-dimensional extension of the one-dimensional uniform covering is called a cubical
cover. In specific, a cubical cover U is a set of d-dimensional cubes:

U =
{
I
(1)
k1
× · · · × I

(d)
kd
| k1, . . . , kd = 1, . . . , r

}
,

where r is the number of intervals of each dimension and I
(j)
k = (a

(j)
k , b

(j)
k ) represents open

interval along the jth dimension with a
(j)
k < a

(j)
k+1, b

(j)
k < b

(j)
k+1, a

(j)
1 = m(j) and b

(j)
r = M (j)

for m(j) = mini fj(xi) and M (j) = maxi fj(xi). Here fj(xi) is the jth element of f(xi). In
practice, the intervals of each dimension are set to be the same length (i.e. b(j)1 − a

(j)
1 = · · · =

b
(j)
r − a

(j)
r ). When identifying the node where the newly injected data point x∗ belongs, we

consider fj(x∗) to be contained in I
(j)
1 if fj(x∗) ≤ m(j). Similarly, fj(x∗) is contained in I

(j)
r

if fj(x∗) ≥M (j). Two consecutive intervals, Ik and Ik+1, overlap with the ratio p of the length
of the overlapped interval to the length of each interval, i.e. (i.e. p = (bk − ak+1)/(bk − ak)
or p = (bk − ak+1)/(bk+1 − ak+1)). Here note that the uniform cubical covering was utilized
for the original mapper algorithm, but the covering can be adaptively determined, e.g. [13].



328 LEE AND JUNG

Inverse covering: Since we want to construct a graph where the vertices form as a cluster
of xi, we find f−1(Ui). Since f is assumed to be continuous f−1(U) is also an open cover-
ing of X . For the one-dimensional case as in the above step, for example, Xi := f−1(Ii) =
{x | f(x) ∈ Ii,x ∈ X}. This step is crucial to form vertices towards the mapper graph. Once
the inverse covering Xi = f−1(Ui) and all the points of xi ∈ {x | x ∈ Xi,x ∈ X} are
identified, we now examine how the points xi are connected to each other in Xi. This ex-
amination is done by counting the number of clusters within Xi, which is usually achieved
by using the clustering algorithms. A clustering algorithm is applied to the set of points
{x | x ∈ X and x ∈ Xi}. Decompose Xi into path-connected sets Xi,k where k is finite,
k = 1, 2, · · · ,K and K is the total number of connected regions in Xi. The connected sets
Xi,k are determined by the clustering algorithm applied to the set {x | x ∈ X and x ∈ Xi}.

Vertices and edges: Now we treat Xi,k as a vertex and whose size is determined by the
number of x ∈ X in Xi for visualization. Usually, the color is assigned to each vertex and
every vertex Xi,k in Xi is assigned the same color for visualization. An edge is constructed
between two vertices Xi,k and Xj,l, i ̸= j if Ui ∩ Uj ̸= ∅ and there exists x ∈ X such that
x ∈ XI,k and x ∈ Xj,l.

Remark: The mapper algorithm focuses on the connectivity of points x ∈ X according to
the filter function values and the final result is given as a graph. This does not imply that there
is a unique visualization of the graph. That is, the visualization components of the graph such
as the edge lengths, the coordinates of the vertices, etc. are arbitrary.

2.2. Clustering algorithms. For the determination of the vertices and edges for the mapper
algorithm, clustering algorithms are used. There are several clustering algorithms including
DBSCAN (Density-based spatial clustering of applications with noise) [14]. In this work, we
also adopt DBSCAN for clustering. In practice, DBSCAN algorithm is popularly used be-
cause it is not required to specify the number of clusters, which is the main difference between
DBSCAN and k-means clustering algorithms. DBSCAN is also suitable for finding arbitrarily-
shaped clusters and is robust to noise and outliers. The DBSCAN algorithm has two parame-
ters: eps, which will be denoted as ϵ for conciseness, and min samples for denseness. For
each point xi in a given dataset D, define its ϵ-neighborhood Bϵ(xi) as the set of all points in
D that are at distance less than ϵ:

Bϵ(xi) := {x ∈ D | d(xi,x) < ϵ} .
If the ϵ-neighborhood Bϵ(xi) of a point xi contains at least min samples points, the point
xi is considered as a core point and its ϵ-neighborhood Bϵ(xi) forms a cluster. If the ϵ-
neighborhood Bϵ(xi) includes another core point xj , the two clusters formed by these ϵ-
neighborhoods merge into a single cluster. If a point is not a core point but belongs to some
cluster, it is called a border point. If a point is not part of any cluster, it is regarded as noise.
For an unseen data point x∗, if there are core points in Bϵ(x

∗) it is assigned to the cluster that
includes the closest core point. If there is no core point in Bϵ(x

∗), it is classified as noise.

2.3. Examples. In this section, we provide two examples. These examples are simple enough
to draw the final mapper graph by hand. We provide the sample codes using Giotto-TDA.
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(A) f(x) = sin(πx) (B) f−1
(
[−1, 0)

)
(C) f−1

(
(−0.5, 0.5)

)
(D) f−1

(
(0, 1]

)
FIGURE 1. The filtering function f(x) and the covering of U . Those points
that belong to each covering are colored with yellow, blue, and red colors.

Example 1: Consider a set of evenly spaced numbers from −1 to 1:

X = {xi | xi = x0 + n∆x, n = 0, 1, . . . , 1000} , x0 = −1, ∆x = 0.002.

We use a sine function for f(x) = sinπx as the filter function. Then, the range of f is [−1, 1].
We choose the uniform covering with the resolution r = 3 and the overlapping degree p = 0.5.
Then for the uniform covering with r = 3 and p = 0.5, we have

U = {Ii} = {[−1, 0), (−0.5, 0.5), (0, 1]} .

Figure 1 shows the image of xi, i.e., f(xi) in each cover. As shown in the figure, the yellow,
blue and red colors are assigned to the coverings, respectively. Note that the points xi are
evenly spaced, whereas the corresponding values f(xi) on the curve of f(x) are not uniformly
distributed.

As shown in the figure, only the cover I2 has the inverse image, f−1(I2), that has the three
connected sets of points. Other covers have a single connected set. That is, there are three
nodes in X2 corresponding to I2 while each of X1 and X3 forms a single node. Figure 2 shows
the final mapper graph for X where the node size is proportional to the number of points that
belong to each Xi,k. The color of each node is the color in Fig. 1.

FIGURE 2. The Mapper graph for Example 1. f(x) = sin(πx)
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FIGURE 3. Left: The annulus data in 2D. Right: The corresponding mapper
graph via Giotto-TDA.

Example 2: In this example, we consider the annulus data in 2D and use Giotto-TDA [10]
to generate the mapper graph. Consider the annulus data given in the left figure of Fig. 3. The
inner and outer radii are 3 and 5, respectively.

For this case, we use two filter functions f1(x, y) and f2(x, y). For simplicity, we choose

f1(x, y) = x, f2(x, y) = y.

For the 2D cover, we use the rectangle for each cover. In Giotto-TDA there is a module Cubi-
calCover for handling this type of cover. For the clustering, we use DBSCAN algorithm. We
also use r = 5 and p = 0.5. The following shows the Giotto-TDA script for this problem:

# Data X
X = annulus(C=[0,0],ir=3,er=5)
# 1. Filter function
filter_func = Projection(columns=[0, 1])
# 2. Cover
cover = CubicalCover(n_intervals=5, overlap_frac=0.5)
# 3. Clustering
clusterer = DBSCAN()
# 4. Mapper algorithm
pipe = make_mapper_pipeline(filter_func=filter_func,

cover=cover,
clusterer=clusterer,
verbose=False)

fig = plot_static_mapper_graph(pipe, X)
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Algorithm 1 Mapper inference

Input: Target data x∗

Output: Set V∗ of vertices that include x∗

1: Initialize a vertex set V∗ = ∅
2: Evaluate the filter function value f(x∗)
3: Find a set U∗ of covers containing f(x∗) (i.e. U∗ = {Ui | f(x∗) ∈ Ui})
4: if U∗ = ∅ then
5: return V∗
6: else
7: for Cover Ui in U∗ do
8: Find the inverse covering Xi = f−1 (Ui)
9: if ∃ a cluster Xi,j that x∗ belongs to then

10: V∗ ← V∗ ∪ {Xi,j}
11: end if
12: end for
13: return V∗
14: end if

fig.show()

The right figure of Fig. 3 shows the Mapper graph via Giotto-TDA. As shown in the figure,
the mapper graph does not necessarily look similar to the given annulus, but it preserves the
connectivity of the data in the graph.

3. PREDICTION ALGORITHM

As described in the previous section, for the given dataset X = {xi | i = 1, · · · , N}, the
mapper algorithm generates the mapper graph from X . This graph, corresponding to X , based
on specified parameters such as r and p, illustrates the overall shape of X . Should new data
be introduced, such as an additional point, and if we can locate the specific nodes within the
mapper graph where this new data belongs, we can utilize the mapper algorithm as a real-time
prediction algorithm for emerging data. Essentially, this represents the predictive capacity of
the mapper algorithm.

The existing mapper software packages such as Giotto-TDA [10], Gudhi [15], and Kepler
Mapper [16], do not support this prediction function mainly due to their reliance on clustering
algorithms implemented within Scikit-learn [17]. For example, the following modules pro-
vided in Scikit-learn, which are widely used as clustering algorithms for the construction of the
mapper graph are descriptive algorithms but not predictive:

• DBSCAN
• AgglomerativeClustering
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However, if such a predictive capability of the mapper algorithm can be combined with the
existing packages, it could offer an efficient prediction method without perturbing the already
constructed mapper graph. In this paper, we develop a simple predictive algorithm that provides
such a predictive method, by identifying the nodes associated with the input data, compatible
with the existing mapper packages. For the implementation, we build the method based on
DBSCAN from Scikit-learn and the mapper algorithm available from Giotto-TDA.

The predictive algorithm is simply given as the following: Suppose that we are given a
point x∗ that is possibly in X and is not necessarily used to construct the mapper graph. Our
objective is to identify the specific nodes within the constructed mapper graph where the input
point x∗ belongs. If these nodes fall within an anomaly sub-graph, the likelihood of x∗ being
anomalous is significantly elevated. Note that there could be multiple such nodes for x∗. By
applying the filter function f to x∗, we first determine the covers, Ui associated with the filter
value f(x∗). Also note that there could be multiple covers that contain f(x∗). Let U∗ be
the set of such covers, U∗ = {Ui | f(x∗) ∈ Ui}. Once the cover set U∗ is determined, the
pre-image of f−1(Ui) are computed and the corresponding Xi are determined. Once Xi are
determined, the cluster component within each Xi that includes x∗ is identified. As such a
cluster is represented as a known node in the mapper graph, our prediction algorithm returns
such node information. Again note that there could be multiple nodes that satisfy the given
condition.

The pseudo-algorithm for the prediction method that returns the node information V∗ to
which the given data x∗ belongs within the already existing mapper graph is presented in
Algorithm 1. In the algorithm, the input is a point x∗ for which we want to determine the
corresponding nodes in the mapper graph, and the output of the algorithm is the node set V∗
that contains x∗.

Example 3: In this example, we use the annulus data considered in Example 2 and show
how the prediction algorithm identifies the node information for the input data points. Figure 4
illustrates the prediction results for unseen points x1 = (−1, 4), x2 = (−1,−3.2), x3 = (0, 0)
and x4 = (−5, 5) on the mapper graph in Example 2. Note that the filter function in Example
2 is the identity function. The point x1 is included in the two overlapping covers and x2 is
assigned to four inverse coverings. The points x3 and x4 are part of the inverse coverings,
which contain no points. Figure 4 (A) shows the mapper graph of the annulus data with the
assigned nodes of x1 and x2, highlighted in red and violet circles, respectively. For each of
x1 and x2, the assigned nodes are fully connected since each pair of inverse coverings has the
nonempty intersection, which is depicted in Fig. 4 (B). The script below demonstrates how
to give the input data for unseen points and retrieve the list of nodes to which these points
belong. The returned value of −1 indicates that there is no matching node for the input data
point. For example, the points (x, y) = (0, 0) and (−5, 5) do not correspond to any nodes in
the mapper graph. The return value for (x, y) = (−1, 4) is [7, 10], which indicates that there
are two matching nodes (node numbers 7 and 10) to (x, y) = (−1, 4).1

1pmapper is our custom module, available at https://github.com/HiddenBeginner/mapper_
prediction
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FIGURE 4. Prediction for unseen points x1 = (−1, 4), x2 = (−1,−3.2),
x3 = (0, 0) and x4 = (−5, 5). (A): The assigned nodes in the mapper graph
of x1 (marked as red circles) and x2 (marked as violet circles). (B): The points
in the inverse coverings corresponding to the four points (marked as green
circles). Different colors and symbols represent distinct inverse coverings.

# Preditive algorithm
# Input: data points
# Output: node information

import numpy as np
from pmapper.utils import data2nodes

data = np.array([
[-1.0, 4.0],
[-1.0, -3.2],
[0.0, 0.0],
[-5.0, 5.0] ])

nodelist = data2nodes(data, pipe, graph)
print(nodelist)
[[7, 10], [16, 2, 17, 22], -1, -1]

4. EXPERIMENT

For the numerical experiment, we use the anomaly detection problem and we assume that
the anomaly points within X are represented as a distinctive set of nodes in X . We focus
on how to identify the nodes where the new input points belong. If the identified nodes are
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anomaly nodes, we expect that the new input point is also anomalous. To demonstrate the
developed prediction algorithm, we consider a more realistic example, i.e. the credit card fraud
transaction data explained below. Here note that it is not the goal of this paper to develop an
anomaly detection method. Our goal is to develop a node prediction algorithm. We assume
that once we identify the associated nodes with the input data we can know the features of the
input data by examining the features of the identified nodes.

4.1. Credit card fraud transaction data. To use a realistic problem for the experiment, we
consider the anomaly detection problem of the credit card fraud data provided by Kaggle.2 The
data is composed of total 284, 807 individual transactions. The individual data is composed
of 31 elements with the first denoting the time stamp and the second last the total amount of
transaction. The last element has the value of either 0 or 1. The value of 1 indicates that
the transaction is the fraud transaction. The value of 0 indicates the normal transaction. The
meaning of the rest 28 elements, named as V1 to V28, is not given. Since we know whether
the data is fraud or not, this problem is for the fraud detection with supervised data. Among
all, there are 492 fraud data, which is about 0.1727% of the data. We used the first 20% of
data to construct mapper graphs, primarily due to the heavy space complexity of our predictive
mapper algorithm. The remaining data were used for evaluation. We excluded the time stamp
and the label when constructing mapper graphs.

4.2. Construction of mapper graph. The filter function is designed to distinctly separate
abnormal data in the codomain, drawing inspiration from the tutorial provided by Kepler Map-
per.3 Specifically, the filter function f : X → R3 for X ⊆ R29 is defined by

f(x) =

f1(x)f2(x)
f3(x)

 , (4.1)

where f1(x) is the anomaly score of x computed by the Isolation Forest [18] algorithm trained
on X , f2(x) is the distance from its nearest neighborhood (excluding its own), and f3(x) is
the Euclidean norm of x. Since no function fi requires label information (indicating whether
each data is normal or fraudulent), the filter function f can be applied to an unlabeled dataset.
However, one can define a filter function that effectively distinguishes normal and fraudulent
data in the codomain by utilizing the label information. For example, the projection onto the
k features that distinctly separate normal and abnormal data can serve as such a filter function.
Building upon this intuition, we define another filter function g as the projection to the k fea-
tures that exhibit clear segregation in the histograms between normal and abnormal data. In
specific, the projection onto the k = 3 features V4, V12 and V14 is used as the filter function

2https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
3https://kepler-mapper.scikit-tda.org/en/latest/notebooks/TOR-XGB-TDA.html
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FIGURE 5. Mapper graphs with the two different filter functions f (left) and
g (right). The color of each node indicates the proportion of abnormal data in
the node. The colored circles indicate the top3 nodes where fraudulent data
from the test dataset are most frequently mapped. The colors correspond to
those used in Figure 6.

g:

g(x) =

 v4
v12
v14

 , (4.2)

where v4, v12 and v14 are the values of each feature element of V4, V12 and V14, respectively.
Appendix B shows the distribution of each feature from V1 to V28 for the normal (blue) and
fraud data (orange) in the training dataset. As shown in the figure, there are clear differences
between the normal and abnormal distributions for V4, V12 and V14. There are other features
that also show the distributional difference between the normal and abnormal data, such as V9,
V10, V16, V17, V18, and V19. However, in this work, we focus on those three features of
V4, V12 and V14, which is sufficient for our main objective of our research.

We use a cubical cover with r = 5 and p = 0.2 for a covering of the range of each filter
function. We employ the DBSCAN clustering algorithm with eps= 0.5 and min samples=
5 to identify connected components in each of the inverse covering. All hyperparameters are
selected by trial and error to ensure the generated mapper graphs are both visually interpretable
and explainable.

4.3. Results. Figure 5 shows the two mapper graphs, denoted as Gf (left) and Gg (right), with
the different filter functions f in (4.1) and g in (4.2), respectively. The size of each node is
proportional to the number of data within the node while the color indicates the proportion of
fraud data in the node.
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For example, the largest nodes in Fig. 5 (A) and (B) contain 49, 388 and 33, 273 data points,
respectively, while the smallest nodes in both graphs contain only a single data point. The red
color with the contour level of 1 indicates that the corresponding node is composed of all fraud
data points and no fraud data point is contained if the level is 0. The mapper graph Gf contains
a total of 60 nodes, with 14 consisting of more fraudulent than normal data, which we refer to
as fraudulent nodes. These fraudulent nodes are divided into two subgraphs located on the left
and right sides of the entire graph. Notably, the subgraph on the right is distinctly separated
from the normal nodes. In contrast, in the mapper graph Gg, there are 36 fraudulent nodes out
of a total of 88 nodes. These fraudulent nodes form four subgraphs, with the subgraph in the
bottom right exhibiting particularly high connectivity.

Seemingly, the fraudulent nodes are more clearly segregated from the normal nodes in the
mapper graph Gg compared to Gf . We utilize the node prediction algorithm, developed in
Section 3, on test data to numerically compare the representation capabilities of the two graphs.
Firstly, we observe that among 227, 846 test samples, the mapper graphs Gf and Gg fail to
assign nodes to 34 and 28 samples, respectively. It is intriguing that Gf and Gg can encompass
almost all unseen samples even though the mapper graphs were constructed with just the first
20% of data. The mapper graph Gg covers six more samples compared to Gf . We speculate that
the projection filter function has less diversity among samples. In contrast, the filter function f ,
defined as the norm and the anomaly scores of data, exhibits greater diversity across samples.

Figure 6 shows the distributions of the fraudulent samples in the test data over the nodes in
the mapper graphs Gf and Gg. On the x-axis, the nodes in each graph are arranged in order
of the number of samples mapped into those nodes, which are shown on the y-axis. The three
colored nodes correspond to the nodes circled in the same colors in Figure 5. Notably, the
first two nodes (colored red and orange) are identified as fraudulent nodes in Gf , but as normal
nodes in Gg. This indicates that a variety of samples are assigned to normal nodes in Gg, which
implies Gg may not represent future fraudulent data as effectively as Gf . Hence, the mapper
graph Gf more accurately preserves the overall underlying structure of the fraud detection data.

4.4. Remarks on the node prediction algorithm. The following remarks outline some char-
acteristics of the prediction algorithm.
• The node prediction algorithm relies on the selection of filter functions used. As shown in

the numerical results above, certain nodes are predicted by both Gf and Gg, while some nodes
are exclusively predicted by only one of the graphs. Similar considerations are applicable when
the prediction algorithm returns the value of −1, indicating no identified nodes. For example,
Gf and Gf failed to identify the associated nodes for 34 and 28 samples, respectively. Among
them, there are 5 shared samples for which neither Gf nor Gf yielded associated nodes. In Fig.
6, we marked the nodes in each mapper graph, where fraudulent data are most prominent with
circles in the graph. For Gf , the top 2 nodes were fraudulent nodes, whereas for Gg, the top 2
nodes were normal nodes. This indicates that the prediction algorithm depends on the choice
of the filter function and there is no guarantee that newly injected fraud data will always be
mapped solely to fraud nodes in the above example.
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FIGURE 6. Distributions of the fraudulent data in the test dataset over the
nodes in the mapper graphs Gf and Gg. The x-axis indicates the nodes sorted
by the number of fraudulent data that are mapped into the nodes, which are
shown on the y-axis. The colors of the first three bars correspond to those
used in Figure 5.

• The node identified by the prediction algorithm might contain multiple data points within
it. Furthermore, if the prediction algorithm predicts multiple nodes for the input data, it implies
a larger amount of data could be related to the input data. In such cases, statistical analysis
becomes feasible.
• The prediction algorithm might yield predictive results in two potential cases. The first

case involves the algorithm returning the node numbers associated with the input data – the
identified nodes are the nodes within the mapper graph used by the prediction algorithm. In the
second case, our algorithm returns a value of -1 because none of the nodes from the employed
mapper graph is identified.
• Understanding the situation is important when none of the nodes from the utilized mapper

graph is identified. This scenario could be explained by considering two possible reasons.
Firstly, the absence of node identification might stem from insufficient data samples proximal
to the input data. Alternatively, it could indicate that the input data inherently does not belong
to the dataset forming the mapper graph.

5. CONCLUSION

The mapper algorithm, a TDA method, visualizes the given dataset as a graph. The key
characteristics of the mapper algorithm is embedded well in the graph structure such as the
node connectivity and clustering. As the data is represented as a graph, the overall shape of the
graph delivers useful knowledge about the given data. Particularly for the detection problems,
one can detect the desired feature characteristics of the new input data point by identifying the
distinct sub-graphs or nodes where the new input data point belongs. Most mapper packages
provide descriptive algorithms resulting in the static mapper graph and its overall shape. In
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this paper, we developed an algorithm that can identify the sub-graphs or nodes where the new
input data belongs. Once such information is extracted, one can determine whether the new
input point falls into the category of interest. For example, if the category is the degree of
anomaly, the method can be used for the anomaly detection. Moreover, as the computations
for this method involve only the computation of the function values, covers and clusters, the
computational complexity of the proposed algorithm is low. Thus this can be used as a real-time
detection method. In this paper, we used the real credit card transaction data and considered
the fraud transaction detection problem. The numerical experiments show that the developed
algorithm efficiently identifies the node information associated with the new input data point.
Our future research focuses on utilizing analysis methods associated with the node prediction
algorithm to determine the characteristics of the input data.
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Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis toolkit for machine
learning and data exploration. Journal of Machine Learning Research, 22(39):1–6, 2021.

[11] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. Philosophical Maga-
zine Series 1, 2:559–572, 1901.

[12] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(86):2579–2605, 2008.

[13] Enrique Alvarado, Robin Belton, Emily Fischer, Kang-Ju Lee, Sourabh Palande, Sarah Percival, and Emilie
Purvine. g-mapper: Learning a cover in the mapper construction, arXiv:2309.06634, 2023.



A PREDICTIVE MAPPER ALGORITHM 339

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[15] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Simplicial
complexes and persistent homology. In Hoon Hong and Chee Yap, editors, Mathematical Software – ICMS
2014, pages 167–174, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[16] Hendrik Jacob van Veen, Nathaniel Saul, David Eargle, and Sam W. Mangham. Kepler mapper: A flexible
python implementation of the mapper algorithm. Journal of Open Source Software, 4(42):1315, 2019.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE International Confer-
ence on Data Mining, pages 413–422, 2008.



340 LEE AND JUNG

APPENDIX A

The script below draws circles around the nodes to which x1 and x2 are assigned in the annu-
lus example. The full script is available at https://github.com/HiddenBeginner/
mapper_prediction/blob/master/Examples.ipynb

import plotly.graph_objects as go

nodelist = data2nodes(data, pipe, graph)
fig = plot_static_graph(graph, X, color_data=X[:,0], node_scale=20)

indices = nodelist[0]
fig.add_trace(

go.Scatter(
mode=’markers’,
x=fig.data[1].x[indices],
y=fig.data[1].y[indices],
marker=dict(

size=np.array(fig.data[1].marker.size)[indices] / 10,
color=’rgba(0, 0, 0, 0.0)’,
line=dict(color=’red’, width=5)

),
showlegend=False

)
)

indices = nodelist[1]
fig.add_trace(

go.Scatter(
mode=’markers’,
x=fig.data[1].x[indices],
y=fig.data[1].y[indices],
marker=dict(

size=np.array(fig.data[1].marker.size)[indices] / 10,
color=’rgba(0, 0, 0, 0.0)’,
line=dict(color=’blueviolet’, width=5)

),
showlegend=False

)
)

fig.show()
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APPENDIX B

The following histograms show the distribution of individual feature values from V1 to
V28. The x-axes indicate the feature values and the y-axes are the relative frequencies. These
diagrams illustrate which features exhibit greater sensitivity towards fraud transactions.
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FIGURE 7. The histograms of features from V1 to V28 within the training
dataset of the fraud detection dataset. The x-axes indicate the feature values
and the y-axes are the relative frequencies.




