• Title/Summary/Keyword: Urea-SCR

Search Result 130, Processing Time 0.026 seconds

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

A Study on the Characteristics of NOx Reduction by Urea-SCR System for a Light-Duty Diesel Engine (Urea-SCR 시스템에 의한 소형 디젤엔진의 NOx 저감 특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Choi, Joo-Yol;Choi, Jae-Sung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.521-527
    • /
    • 2005
  • The effects of an urae injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine are investigated experimentally. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection must be precisely metered and then I used the urea syringe pump. I have tested 4 kinds of items that were with the EGR base engine and without the EGR engine. Then I tested each urea-SCR(Selective Catalytic Reduction) system. As the results, I can caculate the SUF(Stoichiometric Urea Flow) and visualize the NOx results by variation of engine speed and engine load. Also, I can make the NOx map. Therfore, I knew that NOx reduction effects of the urea-SCR system without the EGR engine were better than the with EGR base engine except of low load and low speed.

  • PDF

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler (촉매삽입형 Urea-SCR 머플러 다공튜브 형상변화에 따른 NOx 저감 특성에 관한 연구)

  • Moon, Namsoo;Lee, Sangkyoo;Ko, Sangchul;Lee, Jeekeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1017-1026
    • /
    • 2014
  • A multi-perforated tube is generally installed between the muffler inlet and in front of selective catalytic reduction (SCR) catalysts in the integrated urea-SCR muffler system in order to disperse the urea-water solution spray uniformly and to make better use of the SCR catalyst, which would result in an increase nitrogen oxide ($NO_x$) reduction efficiency and a decrease in the ammonia slip. The effects of the multi-perforated tube orifice area ratios on the internal flow characteristics were investigated analytically by using a general-purpose commercial software package. From the results, it was clarified that the multi-perforated tube geometry sensitively affected the generation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst. To verify the analytical results, engine tests were carried out in the ESC and ETC modes. Results of these tests indicated that the larger flow model in the longitudinal direction showed the highest NOx reduction efficiency, which was a good agreement with the analytical results.

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

Freezing and Melting Phenomena of Urea-water Solution for Diesel Vehicle SCR System (디젤차량 SCR 시스템용 요소수용액의 동결과 해동 현상)

  • Choi, B.C.;Seo, C.K.;Myong, K.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.5-10
    • /
    • 2009
  • Urea-SCR system, the selective catalytic reduction using urea as reducing agent, is a powerful technique to reduce nitrogen oxides(NOx) emitted from diesel engines. However, a tank of urea(32.5 wt%)-water solution can be frozen in low ambient temperature levels of below $-11^{\circ}C$. The purpose of this study is to understand freezing and melting phenomena of the urea-water solution, and its can be applied to get the urea-water solution from frozen it within 5 minutes after cold start. Factors considered were the type of heater and the urea tank shape. From the results, it was found that melting volume of cartridge heater B during 5 minutes of heating period was 83ml when supplying electric power of 150W. Horizontal heater B, which was put in the narrow bottom space of the tank T1, had fast melting characteristics.

  • PDF

Frozen and Melting Characteristics of Urea-aqueous Solution for Urea-SCR System by Circulation of Engine Coolant (엔진 냉각수 순환에 의한 urea-SCR 시스템용 요소수의 동결 및 해동 특성)

  • Choi, B.C.;Kim, Y.K.;Kim, H.N.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the best melting condition with various winding number of a heating pipe, supplying quantity of engine coolant and coolant temperature at the inlet of the heating pipe. Also, it is to suggest getting method of an appropriate quantity of the agent for the urea-SCR system within 10 minutes. For this matter, this study identifies the temperature distribution of inside of urea-tank while it is frozen at the low temperature condition, and suggests the best melting condition of the frozen urea within 10 minutes. From the results, it was found that 2L of melted urea was obtained by the coolant flow rate of 200L/hr at $70^{\circ}C$ for 10 minutes from the start of engine operating.

STATIC CHARACTERISTICS OF A UREA-SCR SYSTEM FOR NOx REDUCTION IN DIESEL ENGINES

  • Nam, J.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents the static characteristics of a urea-SCR system. The static characterization of the urea-SCR system was generated by sweeping urea flow rates at common engine torque/speed operating points. Several experiments were performed using engine operating points at different raw NOx emission levels, space velocities, and SCR catalyst temperatures. The recorded NOx emissions from the engine exhaust outlet and engine tailpipe are then compared. The urea-SCR static system results indicated that a $50{\sim}60%$ NOx conversion is achievable at most engine operating points using the stoichiometric $NH_3/NOx$ ratio, and a high 98% NOx conversion is possible by exceeding the stoichiometric $NH_3/NOx$ ratio. The effect of the pre-oxidation catalyst volume was also investigated and found to have a profound impact on experimental results, particularly the static NOx conversion.

Investigation on the DeNOx Efficiency in Urea-SCR System at Various Operating Conditions and Injection Characteristics for a Passenger Diesel Engine (승용디젤엔진의 운전 조건 및 분사 조건 변경에 따른 Urea-SCR 시스템의 NOx 전환효율에 관한 연구)

  • Hong, Kil-Hwa;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.952-960
    • /
    • 2009
  • Selective Catalytic Reduction (SCR) system is a high-effective NOx reduction technology in diesel engines. As the emission standard of diesel engines is more stringent, vehicle manufactures makes efforts on emission technologies. This paper discusses the performance of Urea-SCR system according to the engine operating conditions in a passenger diesel engine. Engine test results in this paper show that it is important to consider the catalyst temperature and space velocity to obtain high NOx conversion efficiency. In condition of high catalyst temperature, over 90% NOx conversion efficiency is indicated. However, when catalyst temperature is low, NOx conversion efficiency was decreased. Also, it was shown that space velocity mainly effects on the DeNOx performance under 220 degree celsius of SCR catalyst temperature. As the urea injection pressure was decreased, NOx conversion efficiency was declined. It is concerned about urea droplet atomization. This work shown in this paper can lead to improved overall NOx conversion efficiency.

Study on the Flow Characteristics of Urea-SCR Swirl Injector according to the Needle Lift Profile (Urea-SCR용 스월 인젝터의 니들 리프트 형상에 따른 유동특성에 대한 연구)

  • Gwak, Eun-Jo;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.650-655
    • /
    • 2016
  • In this study, a computational simulation of the internal flow characteristics was carried out for a Urea-SCR Injector. A single hole swirl injector with a swirl disk and slanted nozzle was used in this simulation. The maximum needle lift and opening velocity were selected as the design parameters. To analyze the unsteady internal flow characteristics of the Urea-SCR injector, the moving grid technique was applied to simulate the delicate needle movement. According to the simulation results, the injected mass flow rate from the Urea-SCR injector decreased with increasing needle opening velocity and maximum needle lift. This is because the Urea-solution tends to fill the empty space that the needle previously occupied. The swirl flow is decreased as the flow goes through the injector nozzle, because of the friction with the nozzle wall. Also, during the maximum needle lift period, the swirl coefficient and mean swirl coefficient increase with increasing needle lift. The results of this study may be used as the basic design data of related injectors.