• Title/Summary/Keyword: Urban underground subway

Search Result 82, Processing Time 0.028 seconds

Deformation Behavior and Reinforcement Design of a Tunnel Excavated in Weak Rock by the NATM (연약암반에 굴착되는 NATM 터널의 변형거동과 보강설계)

  • 서영호;이정인
    • Tunnel and Underground Space
    • /
    • v.3 no.2
    • /
    • pp.132-141
    • /
    • 1993
  • Laboratory and field tests were performed to find out the effectiveness of ground improvement by grouting for an urban subway tunnel that was excavated in weak rock by the NATM. Field measurements were carried out to monitor the behavior of rock mass around the tunnel and to ensure the validity of the current design of the distance form the measuring points to the tunnel face. The final converged displacement and the peroid were predicted using the gamma function. It was found that the ground improvement in terms of reduced permeability and increased stength in the self-supportability of the excavation face enabled the NATM applied in poor gorund. As the result of applying the gamma function to the predicting of displacement, the final displacement including the preceding one and the converged period could be approximately predicted at the early excavation stage.

  • PDF

Damage Detection of Decrepit Tunnel Structures using the NDT (비파괴 검사법에 의한 노후터널의 건전도 평가)

  • Kim, Dong-Gyou;Jung, Ho-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1388-1391
    • /
    • 2010
  • Recently, the construction of road, subway, railroad, and microtunnel for electricity supplement have been increased because of increasement of traffic in urban area, increasement of industrial transportation, and the network between cities in Korea. The deterioration of tunnel structure may occur by various internal and external factors and particularly, tunnel structures tend to contact with either underground water or harmful ions. Therefore, leakage sometimes occurred through the cracks and joints of concrete lining. The leakage in tunnel may affect the durability of concrete lining. In this study, to evaluate the durability and deterioration of concrete lining in tunnel structures, we were performed the various experiments for compressive strength. Compressive strength obtained from nondestructive inspection and compressive strength test varies according to the concrete lining conditions.

  • PDF

The illegal case and Improvement of Excavation (흙막이 굴착공사의 부실 사례 및 개선방향)

  • Choi, Jung-Bum;Shin, Seung-Mock
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.643-650
    • /
    • 2009
  • The necessary consequence by the rapid economic growth in large-scale urban excavation is increasing. If the site is the congested in downtown, the scale of excavation will get the large-scale and the extreme depth. We have achieved a high level technology internationally by the design and construction of underground excavation since 1980's. But the accidents during excavation are frequently occurring. So, this demage instigates the human life loss as well as economical loss. The recent accident is come about the damage for public facilities such as the railroad, subway and etc. in addition to the loss of life and property. For these reasons, the recent accident is being caused the damage of copious social overhead capital. The reasons of collapse during excavation can be classified roughly into the administrative part(sanction, permission), the investigation and design, the construction and management and etc. In this study the close check for the cases of the recent collapse is performed and the improvement course for the prevention of collapse is found.

  • PDF

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

Exposure to Particles and Nitrogen Dioxide Among Workers in the Stockholm Underground Train System

  • Plato, N.;Bigert, C.;Larsson, B.M.;Alderling, M.;Svartengren, M.;Gustavsson, P.
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.377-383
    • /
    • 2019
  • Objectives: Exposure to fine particles in urban air has been associated with a number of negative health effects. High levels of fine particles have been detected at underground stations in big cities. We investigated the exposure conditions in four occupational groups in the Stockholm underground train system to identify high-exposed groups and study variations in exposure. Methods: $PM_1$ and $PM_{2.5}$ were measured during three full work shifts on 44 underground workers. Fluctuations in exposure were monitored by a real-time particle monitoring instrument, pDR, DataRAM. Qualitative analysis of particle content was performed using inductively coupled plasma mass spectrometry. Nitrogen dioxide was measured using passive monitors. Results: For all underground workers, the geometric mean (GM) of $PM_1$ was $18{\mu}g/m^3$ and of $PM_{2.5}$ was $37{\mu}g/m^3$. The particle exposure was highest for cleaners/platform workers, and the GM of $PM_1$ was $31.6{\mu}g/m^3$ [geometric standard deviation (GSD), 1.6] and of $PM_{2.5}$ was $76.5{\mu}g/m^3$ (GSD, 1.3); the particle exposure was lowest for ticket sellers, and the GM of $PM_1$ was $4.9{\mu}g/m^3$ (GSD, 2.1) and of $PM_{2.5}$ was $9.3{\mu}g/m^3$ (GSD, 1.5). The $PM_1$ and $PM_{2.5}$ levels were five times higher in the underground system than at the street level, and the particles in the underground had high iron content. The train driver's nitrogen dioxide exposure level was $64.1{\mu}g/m^3$ (GSD, 1.5). Conclusions: Cleaners and other platform workers were statistically significantly more exposed to particles than train drivers or ticket sellers. Particle concentrations ($PM_{2.5}$) in the Stockholm underground system were within the same range as in the New York underground system but were much lower than in several older underground systems around the world.

Lateral Earth Pressures Acting on Anchored Retention Walls for Underground Excavation (지하굴착시 앵커지지 흙막이벽에 작용하는 측방토압)

  • 홍원표;윤중만
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 1995
  • Recently, in order to utilize more effectively underground space, deep excavations have been performed on building or subway construction in urban areas. In such excavations, anchors have been used to support the excavation retaining walls because the anchored excavation could provide wide working space for underground construction. The purpose of this paper is to establish empirical equations to be able to estimate the earth pressures acting on anchored excavation retention walls, based on the investigation of field measuring results, which were obtained from twenty seven building construction sites. The prestressed anchor force was measured by load cells which were attached to the anchor head, while the horizontal displacement of excavation walls were measured by inclinometers which were installed right'behind the retention walls. The lateral earth pressures acting on the anchored retention walls, which were estimated from both the measured anchor forces and the horizontal displacement of the walls, showed a trapezoidal distribution. There was some difference between the measured earth pressures acting on the anchored retention walls and the empirical earth pressures given by several empirical equations. Thus, the lateral earth pressures acting on anchored retention walls would be estimated by these empirical equations with some modifications.

  • PDF

Evaluation of the blast-restriction zone to secure tunnel lining safety (터널라이닝 안전관리를 위한 발파제한영역 평가)

  • Shin, Jong-Ho;Moon, Hoon-Ki;Choi, Kyu-Cheol;Kim, Tae-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 2009
  • In urban areas, blast excavation adjacent to tunnels is carried out frequently. It is generally required to secure static and dynamic stability of nearby tunnel structures for any such activities. Although there is some national guidelines for static safety, there is little guides to risk zoning controling the dynamic behavior of the underground structures. In this study, impacts on the blast-induced vibration are investigated using numerical study. An attempt to define the restricted area of blast adjacent to subway tunnels was also made. Particular concerns were given to tunnel depth and ground types. By carrying out the parametric study on depth and ground patterns, the envelope of blast distance of which dynamic response on the lining is controlled under 1 cm/sec, is established. It is shown that the increase in depth has increased the required safety distance slightly until the distance of 3.5 times of the tunnel diameter. Despite small changes in safety distance, it can be generally said that the effects of depth and stiffness of the ground is not significant in controlling the particle velocity of the tunnel linings.

Hybrid Integration of P-Wave Velocity and Resistivity for High-Quality Investigation of In Situ Shear-Wave Velocities at Urban Areas (도심지 지반 전단파속도 탐사를 위한 P-파 속도와 전기비저항의 이종 결합)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.45-51
    • /
    • 2010
  • In urban area, design and construction of civil engineering structures such as subway tunnel, underground space and deep excavation is impeded by unreliable site investigation. Variety of embedded objects, electric noises and traffic vibrations degrades the quality of site investigation, whatever the site-investigation technique would be. In this research, a preliminary research was performed to develop a dedicated site investigation technique for urban geotechnical sites, which can overcome the limitations of urban sites. HiRAS (Hybrid Integration of Surface Waves and Resistivity) technique which is the first outcome of the preliminary research was proposed in this paper. The technique combines surface wave as well as electrical resistivity. CapSASW method for surface-wave technique and PDC-R technique for electrical resistivity survey were incorporated to develop HiRAS technique. CapSASW method is a good method for evaluating material stiffness and PDC-R technique is a reliable method for determination of underground stratification even in a site with electrical noise. For the inversion analysis of HiRAS techniuqe, a site-specific relationship between stress-wave velocity and resistivity was employed. As for outgrowth of this research, the 2-D distribution of Poisson's ratio could be also determined.

A study on the applicability of under ground structure using steel tubular roof in Korean geotechnical condition (대구경강관을 이용한 지하구조물 축조공법의 국내지반 적용성 연구)

  • Lee, Young-Bock;Kim, Jeong-Yoon;Park, Inn-Joon;Kim, Kyong-Gon;Lee, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.401-409
    • /
    • 2003
  • Recently, the development of underground structures is to be inevitably necessary due to the increase in population and traffic volume that has caused to the limit of urban land use and the heavy traffic jams. Therefore, underground structures such as subway, underground shopping centers, lifeline facilities and so on, have been increasingly constructed, On the other hand, several social problems have occurred during construction, i.e., ground subsidence, noise, and vibration. Therefore, safer and more beneficial methods for underground construction are on the demand. In this research, N.T.R.(New Tubular Roof) method has been modified and utilized for solving those problems and overcoming the difficulties connected with the bored tunnel construction of large underground openings in unfavorable ground, often under the water table, and with overburdens that are too shallow to solve problems of stability using traditional methods. The N.T.R. method has been modified to suit for Korean geotechnical conditions, and was made up for the weak points-the water leakage from walls and tops, the maintenance and the lack of stability-of the conventional methods. This paper dealt with the features and the applicability of N.T.R. Method based on the results from numerical analysis and data from in-situ monitoring system.

  • PDF

Groundwater Recharge and Discharge in the Urban-rural Composite Area (도농복합지역 지하수 함양과 배출에 대한 연구)

  • Lee, Byung-Sun;Hong, Sung-Woo;Kang, Hee-Jun;Lee, Ji-Seong;Yun, Seong-Taek;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • This study was conducted to identify groundwater recharge and discharge amounts of a representative urban-rural composite area located in Yongin city, Kyounggi-do, Korea. Groundwater recharge would be affected by mainly two processes in the study area: rainfall and leakage from public water pipelines including water-supply and sewage system. Groundwater recharge rate was estimated to be 13.5% by applying annual groundwater level data from two National Groundwater Monitoring Stations to the master regression curve method. Subsequently, the recharge amounts were determined to be $13,253{\times}10^3m^3/yr$. Leakage amounts from water-supply and sewage system were estimated to be $3,218{\times}10^3$ and $5,696{\times}10^3m^3/yr$, respectively. On the whole, a total of the recharge amounts was $22,167{\times}10^3m^3/yr$, of which 60% covers rainfall recharge and 40% pipeline leakage. Groundwater discharge occurred through three processes in the composite area: baseflow, well pumping, and discharge from urban infrastructure including groundwater infiltration into sewage pipeline and artificial extraction of groundwater to protect underground facilities from submergence. Discharge amounts by baseflow flowing to the Kiheung agricultural reservoir and well pumping were estimated to be $382{\times}10^3$ and $1,323{\times}10^3m^3/yr$, respectively. Occurrence of groundwater infiltration into sewage pipeline was rarely identified. Groundwater extraction amounts from the Bundang subway line as an underground facility were identified as $714{\times}10^3m^3/yr$. Overall, a total of the discharge amounts was determined to be $2,419{\times}10^3m^3/yr$, which was contributed by 29% of artificial discharge. Even though groundwater budget of the composite area was identified to be a surplus, it should be managed for a sound groundwater environment by changing deteriorated pipelines and controlling artificial discharge amounts.