DOI QR코드

DOI QR Code

Exposure to Particles and Nitrogen Dioxide Among Workers in the Stockholm Underground Train System

  • Plato, N. (Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet) ;
  • Bigert, C. (Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet) ;
  • Larsson, B.M. (The Swedish Work Environment Authority) ;
  • Alderling, M. (Centre for Occupational and Environmental Medicine, Stockholm County Council) ;
  • Svartengren, M. (Department of Medical Sciences, Uppsala University) ;
  • Gustavsson, P. (Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet)
  • Received : 2018.12.03
  • Accepted : 2019.06.13
  • Published : 2019.09.30

Abstract

Objectives: Exposure to fine particles in urban air has been associated with a number of negative health effects. High levels of fine particles have been detected at underground stations in big cities. We investigated the exposure conditions in four occupational groups in the Stockholm underground train system to identify high-exposed groups and study variations in exposure. Methods: $PM_1$ and $PM_{2.5}$ were measured during three full work shifts on 44 underground workers. Fluctuations in exposure were monitored by a real-time particle monitoring instrument, pDR, DataRAM. Qualitative analysis of particle content was performed using inductively coupled plasma mass spectrometry. Nitrogen dioxide was measured using passive monitors. Results: For all underground workers, the geometric mean (GM) of $PM_1$ was $18{\mu}g/m^3$ and of $PM_{2.5}$ was $37{\mu}g/m^3$. The particle exposure was highest for cleaners/platform workers, and the GM of $PM_1$ was $31.6{\mu}g/m^3$ [geometric standard deviation (GSD), 1.6] and of $PM_{2.5}$ was $76.5{\mu}g/m^3$ (GSD, 1.3); the particle exposure was lowest for ticket sellers, and the GM of $PM_1$ was $4.9{\mu}g/m^3$ (GSD, 2.1) and of $PM_{2.5}$ was $9.3{\mu}g/m^3$ (GSD, 1.5). The $PM_1$ and $PM_{2.5}$ levels were five times higher in the underground system than at the street level, and the particles in the underground had high iron content. The train driver's nitrogen dioxide exposure level was $64.1{\mu}g/m^3$ (GSD, 1.5). Conclusions: Cleaners and other platform workers were statistically significantly more exposed to particles than train drivers or ticket sellers. Particle concentrations ($PM_{2.5}$) in the Stockholm underground system were within the same range as in the New York underground system but were much lower than in several older underground systems around the world.

Keywords

References

  1. Goldsmith CA, Kobzik L. Particulate air pollution and asthma: a review of epidemiological and biological studies. Rev Environ Health 1999;14:121-34. https://doi.org/10.1515/reveh.1999.14.3.121
  2. Janssen NA, Brunekreef B, van Vliet P, Francee A, Kees M, Harssema H, Fischer P. The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch school-children - children's health. Environ Health Perspect 2003;111:1512-8. https://doi.org/10.1289/ehp.6243
  3. Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, Armstrong B, Hughes E, Jerrett M, van den Brandt P. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in The Netherlands: the NLCS-study. Res Rep Health 2009;139:5-71 discussion 73-89.
  4. Liu L, Poon R, Chen L, Frescura AM, Montuschi P, Ciabattoni G, Wheeler A, Dales R. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009;117(4):668-74. https://doi.org/10.1289/ehp.11813
  5. Stabile L, Massimo A, Rizza V, D'Apuzzo M, Evangelisti A, Scungio M, Frattolillo A, Cortellessa G, Buonanno G. A novel approach to evaluate the lung cancer risk of airborne particles emitted in a city. Sci Total Environ 2019 Mar 15;656:1032-42. https://doi.org/10.1016/j.scitotenv.2018.11.432. Epub 2018 Nov 30.
  6. Dockery DW, Pope CA. Acute respiratory effects of particulate air pollution. Ann Rev Publ Health 1994;15:107-32. https://doi.org/10.1146/annurev.pu.15.050194.000543
  7. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995;345(8943):176-8. https://doi.org/10.1016/S0140-6736(95)90173-6
  8. Chillrud S, Epstein D, Ross J, Sax S, Pederson J, Spenglar J, Kinney P. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's underground system. Environ Sci Technol 2004;38:732-7. https://doi.org/10.1021/es034734y
  9. Grass D, Ross JM, Family F, Barbour J, Simpson HJ, Coulibaly D, Hernandez J, Chen Y, Slavkovich V, Li Y, Graziano J, Santella RM, Brandt-Rauf P, Chillrud SN. Airborne particulate metals in the New York City underground: a pilot study to assess the potential for health impacts. Environ Res 2010;110(1):1-11. https://doi.org/10.1016/j.envres.2009.10.006
  10. Adams H, Nieuwenhuijsen M, Colvile R, Mc Mullen M, Khandelwal P. Fine particles ($PM_{2.5}$) personal exposure levels in transport microenvironments, London, UK. Sci Total Environ 2001;279:29-44. https://doi.org/10.1016/S0048-9697(01)00723-9
  11. Aarnio P, Yli-Tuomi T, Kousa A, Makela T, Hirsikko A, Hameri K, Raisanen M, Grass DR, Ross JM, Family F, Barbour J, Simpson HJ, Coulibaly D, Hernandez J, Chen Y, Slavkovich V, Li Y, Graziano J, Santella RM, Brandt-Rauf P, Chillrud SN. The concentration and composition of and exposure to fine particles ($PM_{2.5}$) in the Helsinki subway system. Atmos Environ 2005;39:5059-66. https://doi.org/10.1016/j.atmosenv.2005.05.012
  12. Ripanucci G, Grana M, Vicentini L, Magrini A, Bergamaschi A. Dust in the underground railway tunnels of an Italian town. J Occup Environ Hyg 2006;3:16-25. https://doi.org/10.1080/15459620500444004
  13. Li TT, Bai YH, Liu ZR, Li JL. In-train air quality assessment of the railway transit system in beijing: a note. Transport. Res. Part D-transport. Environ 2007;12:64-7. https://doi.org/10.1016/j.trd.2006.11.001
  14. Cheng YH, Lin YL, Liu CC. Levels of $PM_{10}$ and $PM_{2.5}$ in Taipei rapid transit system. Atmos Environ 2008;42:7242-9. https://doi.org/10.1016/j.atmosenv.2008.07.011
  15. Cheng Yu-Hsiang, Lin Yi-Lun. Measurement of particle mass concentrations and size distributions in an underground station. Aerosol Air Qual Res 2010;10:22-9. https://doi.org/10.4209/aaqr.2009.05.0037
  16. Park DU, Ha KC. Characteristics of $PM_{10}$, $PM_{2.5}$, $CO_2$ and CO monitored in interiors and platforms of underground train in Seoul, Korea. Environ Int 2008;34(5):629-34. https://doi.org/10.1016/j.envint.2007.12.007
  17. Martins V, Moreno T, Minguillon MC, Amato F, de Miguel E, Capdevila M, Querol X. Exposure to airborne particulate matter in the subway system. Sci Total Environ 2015 Apr 1;511:711-22. https://doi.org/10.1016/j.scitotenv.2014.12.013. Epub 2015 Jan 21.
  18. Seaton A, Cherrie J, Dennekamp M, Donaldson K, Hurtley J, Tran C. The London underground: dust and hazards to health. Occup Environ Med 2005;65:355-62.
  19. Gotbrant U. Delredovisning av luftfororeningsundersokningar i Stockholms Tunnelbana (Part records of air pollution investigation in Stockholm Underground), Tekniska avdelningen, Miljo- och halsoskyddsforvaltningen, Stockholms kommun; 1993 [Stockholm, Sweden. (in Swedish)].
  20. Johansson C, Johansson PA, Sjovall B. Partikelhalter i stockholms tunnelbana (suspended particle levels in Stockholm underground). SLB rapport 2; 2001. Miljoforvaltningen, Box 38 024, 100 64 Stockholm, Sweden, 2001. (in Swedish).
  21. Johansson C. Sources of particles in the Stockholm underground (in Swedish). SLB-report 6:2005. Stockholm, Sweden: Stockholm Environment and Health Protection Administration; 2005.
  22. Bigert C, Alderling M, Svartengren M, Plato N, de Faire U, Gustavsson P. Blood markers of inflammation and coagulation and exposure to airborne particles in employees in the Stockholm Underground. Occup Environ Med 2008;65(10):655-8. https://doi.org/10.1136/oem.2007.038273
  23. Bigert C, Alderling M, Svartengren M, Plato N, Gustavsson P. No short-term respiratory effects among particle-exposed employees in the Stockholm subway. Scand J Work Environ Health 2011;37(2):129-35. 2011. https://doi.org/10.5271/sjweh.3074
  24. Gussman R. Evalution of SCC and GK type personal cyclons. Waltham MA02451, USA: BGI Incorporated; 2000.
  25. Ferm M, Svanberg P-E. Cost-efficient techniques for urban- and background measurements of SO2 and NO2. Atmos Environ 1998;32(8):1377-81. https://doi.org/10.1016/S1352-2310(97)00170-2
  26. Zou GY, Taleban J, Huo CY. Confidence interval estimation for lognormal data with application to health economics. Computational Stat Data Anal 2009;53:3755-64. https://doi.org/10.1016/j.csda.2009.03.016
  27. Klepczynska Nystrom A, Larsons BM, Grunewald J, Pousette C, Lundin A, Eklund A, Svartengren M. Health effects of a subway environment in mild astmatic volunteers. Respir Med 2012 Jan;106(1):25. https://doi.org/10.1016/j.rmed.2011.09.008
  28. Wichmann J, Lind T, Nilsson MAM, Bellander T. $PM_{2.5}$, soot and $NO_2$, indoor - outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos Environ 2010;44(36):4536-44. https://doi.org/10.1016/j.atmosenv.2010.08.023
  29. Arbetsmiljoverket. Hygieniska gransvarden, AFS 2018:1 (treshold limit values in Sweden). Solna, Sweden: Arbetsmiljoverket; 2018 [in Swedish)].
  30. Nieuwenhuijsen MJ, Gomez-Perales JE, Colvile RN. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos Environ 2007;41(37):7995-8006. https://doi.org/10.1016/j.atmosenv.2007.08.002
  31. Gomez-Perales JE, Colvile RN, Nieuwenhuijsen M, Fernandez-Bremauntz A, Gutierrez-Avedoy VJ, Paramo-Figueroa VH, Blanco-Jimenez S, Bueno-Lopez E, Mandujano F, Bernabe-Cabanillas R, Ortiz-Segovia E. Commuters' exposure to $PM_{2.5}$, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos Environ 2004;38(8):1219-29. https://doi.org/10.1016/j.atmosenv.2003.11.008
  32. Christensson B, Sternbeck J, Ancker K. Luftburna partiklar - partikelhalter, elementsammansattning och emissionskallor (Suspended airborne particles - particle levels, elementary composition and emission sources). IVL-rapport A22147; 2002 [Stockholm, Sweden. (in Swedish)].
  33. Johansson C, Johansson PA. Particulate matter in the underground of Stockholm. Atmos Environ 2003;37:3-9. https://doi.org/10.1016/S1352-2310(02)00833-6
  34. Kang S, Hwang H, Park Y, Kim H, Ro CU. Chemical compositions of underground particles in Seoul, Korea determined by a quantitative single particle analysis. Environ Sci Technol 2008;42(24):9051-7. https://doi.org/10.1021/es802267b
  35. Molnar P, Bellander T, Sallsten G, Boman J. Indoor and outdoor concentrations of $PM_{2.5}$ trace elements at homes, preschools and schools in Stockholm, Sweden. J Environ Monit 2007;9:348-57. https://doi.org/10.1039/B616858B