• Title/Summary/Keyword: Urban scene

Search Result 82, Processing Time 0.023 seconds

A Multi-Objective TRIBES/OC-SVM Approach for the Extraction of Areas of Interest from Satellite Images

  • Benhabib, Wafaa;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.321-339
    • /
    • 2017
  • In this work, we are interested in the extraction of areas of interest from satellite images by introducing a MO-TRIBES/OC-SVM approach. The One-Class Support Vector Machine (OC-SVM) is based on the estimation of a support that includes training data. It identifies areas of interest without including other classes from the scene. We propose generating optimal training data using the Multi-Objective TRIBES (MO-TRIBES) to improve the performances of the OC-SVM. The MO-TRIBES is a parameter-free optimization technique that manages the search space in tribes composed of agents. It makes different behavioral and structural adaptations to minimize the false positive and false negative rates of the OC-SVM. We have applied our proposed approach for the extraction of earthquakes and urban areas. The experimental results and comparisons with different state-of-the-art classifiers confirm the efficiency and the robustness of the proposed approach.

A kinect-based parking assistance system

  • Bellone, Mauro;Pascali, Luca;Reina, Giulio
    • Advances in robotics research
    • /
    • v.1 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • This work presents an IR-based system for parking assistance and obstacle detection in the automotive field that employs the Microsoft Kinect camera for fast 3D point cloud reconstruction. In contrast to previous research that attempts to explicitly identify obstacles, the proposed system aims to detect "reachable regions" of the environment, i.e., those regions where the vehicle can drive to from its current position. A user-friendly 2D traversability grid of cells is generated and used as a visual aid for parking assistance. Given a raw 3D point cloud, first each point is mapped into individual cells, then, the elevation information is used within a graph-based algorithm to label a given cell as traversable or non-traversable. Following this rationale, positive and negative obstacles, as well as unknown regions can be implicitly detected. Additionally, no flat-world assumption is required. Experimental results, obtained from the system in typical parking scenarios, are presented showing its effectiveness for scene interpretation and detection of several types of obstacle.

Visual Preference in Green Roof Sites (옥상 녹화지의 시각적 선호도)

  • Lee, Gwan-Gyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.5 s.118
    • /
    • pp.32-38
    • /
    • 2006
  • Roof greening in a city can contributes to not only providing network opportunities for dispersed greenspace patches but also bringing more greenspaces into a city. In addition, it can help to flooding and microclimate control in the city. Recently, a number of roof greening projects have been introduced, mainly to public buildings and schools. Roof peening need to offers both ecological functions and convenience and satisfaction for urban residents. This study aims to provide directions for improving ecological benefits and visual preference of roof greening. Twelve scene slides were adopted to measure people's visual preference. The survey results show that landscape images can be categorized into naturalness, visual diversity, uniqueness, and spatial flexibility. Physical scenes can be classified into type I mostly greened by plants, type II mixed between convenience facilities and plants, and type III constructed with pond. People show high preferences to type I and type II when visual diversity is high. The results of this study suggest to enhance the visual preference by considering visual diversity when applying the ecological design methods to improve naturalness for roof greening.

Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System (적응형 헤드 램프 컨트롤을 위한 야간 차량 인식)

  • Kim, Hyun-Koo;Jung, Ho-Youl;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

Semantic Visual Place Recognition in Dynamic Urban Environment (동적 도시 환경에서 의미론적 시각적 장소 인식)

  • Arshad, Saba;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.334-338
    • /
    • 2022
  • In visual simultaneous localization and mapping (vSLAM), the correct recognition of a place benefits in relocalization and improved map accuracy. However, its performance is significantly affected by the environmental conditions such as variation in light, viewpoints, seasons, and presence of dynamic objects. This research addresses the problem of feature occlusion caused by interference of dynamic objects leading to the poor performance of visual place recognition algorithm. To overcome the aforementioned problem, this research analyzes the role of scene semantics in correct detection of a place in challenging environments and presents a semantics aided visual place recognition method. Semantics being invariant to viewpoint changes and dynamic environment can improve the overall performance of the place matching method. The proposed method is evaluated on the two benchmark datasets with dynamic environment and seasonal changes. Experimental results show the improved performance of the visual place recognition method for vSLAM.

Adversarial Wall: Physical Adversarial Attack on Cityscape Pretrained Segmentation Model (도시 환경에서의 이미지 분할 모델 대상 적대적 물리 공격 기법)

  • Suryanto, Naufal;Larasati, Harashta Tatimma;Kim, Yongsu;Kim, Howon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.402-404
    • /
    • 2022
  • Recent research has shown that deep learning models are vulnerable to adversarial attacks not only in the digital but also in the physical domain. This becomes very critical for applications that have a very high safety concern, such as self-driving cars. In this study, we propose a physical adversarial attack technique for one of the common tasks in self-driving cars, namely segmentation of the urban scene. Our method can create a texture on a wall so that it can be misclassified as a road. The demonstration of the technique on a state-of-the-art cityscape pretrained model shows a fairly high success rate, which should raise awareness of more potential attacks in self-driving cars.

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

Estimation of Manhattan Coordinate System using Convolutional Neural Network (합성곱 신경망 기반 맨하탄 좌표계 추정)

  • Lee, Jinwoo;Lee, Hyunjoon;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • In this paper, we propose a system which estimates Manhattan coordinate systems for urban scene images using a convolutional neural network (CNN). Estimating the Manhattan coordinate system from an image under the Manhattan world assumption is the basis for solving computer graphics and vision problems such as image adjustment and 3D scene reconstruction. We construct a CNN that estimates Manhattan coordinate systems based on GoogLeNet [1]. To train the CNN, we collect about 155,000 images under the Manhattan world assumption by using the Google Street View APIs and calculate Manhattan coordinate systems using existing calibration methods to generate dataset. In contrast to PoseNet [2] that trains per-scene CNNs, our method learns from images under the Manhattan world assumption and thus estimates Manhattan coordinate systems for new images that have not been learned. Experimental results show that our method estimates Manhattan coordinate systems with the median error of $3.157^{\circ}$ for the Google Street View images of non-trained scenes, as test set. In addition, compared to an existing calibration method [3], the proposed method shows lower intermediate errors for the test set.

Multi-stage Image Restoration for High Resolution Panchromatic Imagery (고해상도 범색 영상을 위한 다중 단계 영상 복원)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.551-566
    • /
    • 2016
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. Especially, the degradation gives bad influence in the analysis of images collected over the scene with complicate surface structure such as urban area. This study proposes a multi-stage image restoration to improve the accuracy of detailed analysis for the images collected over the complicate scene. The proposed method assumes a Gaussian additive noise, Markov random field of spatial continuity, and blurring proportional to the distance between the pixels. Point-Jacobian Iteration Maximum A Posteriori (PJI-MAP) estimation is employed to restore a degraded image. The multi-stage process includes the image segmentation performing region merging after pixel-linking. A dissimilarity coefficient combining homogeneity and contrast is proposed for image segmentation. In this study, the proposed method was quantitatively evaluated using simulation data and was also applied to the two panchromatic images of super-high resolution: Dubaisat-2 data of 1m resolution from LA, USA and KOMPSAT3 data of 0.7 m resolution from Daejeon in the Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution panchromatic imagery.

A Study on the Cheongshimru and Landscape Structure of Yeoju-Palkyung in Old Poems and Map (누정제영시와 고지도에 투영된 청심루와 여주팔경의 경관구조)

  • Rho, Jae-Hyun;Park, Tae-Hie
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • The study reviewed the content and the meaning of the present Yeoju Palkyung(eight scenery) through analyzing and interpreting the Palkyung poems, old maps and paintings, and classic materials transmitted in Yeoju area, and investigated the landscape structure of the area around the Cheongshimru(淸心樓: pavilion). On the other hand, many Palkyung poems and Noojeongjeyong(樓亭) poems illustrating the Cheongshimru as the view point or the objective have clarified the scenic excellence when the Cheongshimru is the view point. The Yeoju Palkyung viewed from the Cheongshimru was described as constructing all around allocation structure, and six scenes are categorized as a distant view of the visual influence while the 7th scene Ireungdogyeon and the 8th scene Pasagwau are a psychologically influencing landscapes. The panoramic composition of the Yeoju Palkyung at the Cheongshimru is interpreted as the Seunggyeong distribution considering Palchaejigyeongsaek(八采之景色), where main viewpoint is the Cheongshimru and the distant landscape is Paldaejangrim. The reputation of the Cheongshimru, the central place of the Yeoju Palkyung, is confirmed by the technique of scene processing describing a various way of illustrating landscapes such as near view, distant view, pulling view and collecting view. The restoration of Cheongshimru and Paldaesup(八大藪) currently undertaken is the essential business for the full recovery of the Yeoju Palkyung, which will be not only for physical restoration but also for the shortcut to revitalize the history and the spirit of Yeoju. Furthermore, the business direction should be reconsidered to truly understand the meaning, the value, and the structure of the Yeoju Palkyung to ensure the pursuit of the sustainability aiming at the project "Local attractions", one of the Namhangnag Four rivers project of the ministry of Land, Transport and Maritime Affairs.