• Title/Summary/Keyword: Urban climate

Search Result 895, Processing Time 0.036 seconds

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

A Study on the Analysis and Methods to Improve the Management System for Building Energy Database (국가 건물에너지통합관리시스템의 데이터 품질 분석 및 개선방안 연구)

  • Kim, Sung-Min;Yoon, Jong-Don;Kwon, Oh-In;Shin, Sung-Eun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.131-144
    • /
    • 2016
  • Damage occur frequently around the world on climate change and the main cause of greenhouse gas emissions regulation is growing. To this end, the government has built integrated management system for national building energy. The building energy information is total 6.8 million complex. Integrated management system for national building energy database are matched building registers information and energy information of the supply agencies. However, the matching process has its limitations so advanced work is in progress continuously. This study analyzed integrated management system for national building energy database quality and limitations and deduce improvement plan to increase system reliability and availability. The existing database matching average rate is 85.6%. 58.2% of the total non-matching data type has no building information. To ensure the ease of new database matching and the accuracy of the existing database matching, address standarization and building properties system are needed between building information and energy information. Also, The system construction is required to include information on other energy sources like petroleum energy which has high proportion of non-urban areas and small residential areas and renewable energy which has high potential in development and utilization.

A Status of Atmospheric Environmental Impact Assessment and Future Prospects (대기환경영향평가 현황 및 향후 과제)

  • Koo, Youn-Seo;Choi, Dae-Ryun;Kim, Sung-Tae;Lee, Beom-Ku;Yu, Jung-Min;Lee, Seung-Hoon;Cheong, Chang-Yong;Lim, Jeong-Dae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.581-600
    • /
    • 2013
  • The current status of atmospheric environmental impact assessment (EIA) has been summerized and future prospective for effective and accurate atmospheric EIA has been proposed by reviewing available papers and reports for the atmospheric EIA. The number of reports for the EIA in the EIA support system which is operated by the Korean Environmental Institute have been dramatically decreased from 282 reports in 2008 to 113 reports in 2012 during recent five years. This is partially due to simplification of the EIA procedure, the contraction of the public development and economic recession. We analyzed details of the EIA report to review how actual atmospheric EIA has preformed according to the EIA guidelines from the Korean Ministry of Environment. The 264 reports of EIA published in 2011 and 2012 had been reviewed especially focusing on the atmospheric evaluation items such as meteorology, air quality measurement and modeling, odor measurement and modeling, wind corridor in urban planning, and climate change. In overall sense, the atmospheric EIA has been performed quite well by abiding the guidelines except for local meteorological data measurement, permit standard for air quality and wind corridor. The new approaches to improve the procedure of atmospheric EIA and to reflect future of national air quality standard of $PM_{2.5}$ have been proposed. The guidelines on how to evaluate the wind corridor, to implement atmospheric EIA for $PM_{2.5}$ permit, and how to acquire local meteorological data by combining local measurement and model prediction are required for the effective and future oriented atmospheric EIA.

Estimating Quantiles of Extreme Rainfall Using a Mixed Gumbel Distribution Model (혼합 검벨분포모형을 이용한 확률강우량의 산정)

  • Yoon, Phil-Yong;Kim, Tae-Woong;Yang, Jeong-Seok;Lee, Seung-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.263-274
    • /
    • 2012
  • Recently, due to various climate variabilities, extreme rainfall events have been occurring all over the world. Extreme rainfall events in Korea mainly result from the summer typhoon storms and the localized convective storms. In order to estimate appropriate quantiles for extreme rainfall, this study considered the probability behavior of daily rainfall from the typhoons and the convective storms which compose the annual maximum rainfalls (AMRs). The conventional rainfall frequency analysis estimates rainfall quantiles based on the assumption that the AMRs are extracted from an identified single population, whereas this study employed a mixed distribution function to incorporate the different statistical characteristics of two types of rainfalls into the hydrologic frequency analysis. Selecting 15 rainfall gauge stations where contain comparatively large number of measurements of daily rainfall, for various return periods, quantiles of daily rainfalls were estimated and analyzed in this study. The results indicate that the mixed Gumbel distribution locally results in significant gains and losses in quantiles. This would provide useful information in designing flood protection systems.

Development of the 3D simulation for disaster prevention in the downtown soil erosion (I) (도심지 토사재해 예방을 위한 3차원 시뮬레이션 개발(I))

  • Shin, Bong Jin;Youn, Sang Ho;Lee, Gi Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.408-417
    • /
    • 2016
  • The frequent regional torrential or heavy rain and typhoon mostly caused by climate change has resulted in sediment disasters particularly in mountainous or hilly areas. More than 65% of South Korea is mountainous and development and rapid urbanization has brought lots of steep sloping industrial complexes, which are adjacent to cities. Such continuous urbanization and industrialization can result in an increase in serious damage to those places. Korea has very high population density so sediment disaster could result in a tremendous loss of property and life. A recent 10-year (2001~2010) study of the average annual loss shows 68 casualties and property loss of 1.7044 trillion Won(?), which indicates a 20% and 25% decrease for both life and property, respectively, but urban areas are experiencing increasing damage. In this paper, a comprehensive simulator composed by references, analyses, and the recent technologies was applied to visualize the scale of the damaged Woomyeon-san (Mt.) and verify the performance of the simulator.

Development of Thermal Comfort Evaluation Map by the Land Cover in Yeongnam Region (영남지역의 토지피복에 따른 열쾌적성평가도 구축)

  • Kang, Dong-Hyun;Choi, Chul-Hyun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.136-155
    • /
    • 2014
  • The purpose of this study is to analyze the thermal comfort in Yeongnam area using climatic data and GIS data in order to determine regions necessary to improve thermal environment policies. The results of the calculated PET show that Daegu city is high and Bonghwa-gun is low compared to other regions. PET was compared with the typical classification according to regional characteristics. As a result, PET value of rural areas such as Changnyeong-gun, Haman-gun and Goryeong-gun was high but Green space was too low compared to other rural areas. Yeongnam area was classified according to the value of PET using cluster analysis. As a result, more low grade areas show that green space ratio was low and facility area was high. It is determined that there is a relationship between thermal comfort and land cover. The thermal comfort evaluation map in Yeongnam area will be useful for urban planning in order to establish a sustainable city in climate change.

Establishment of location-base service(LBS) disaster risk prediction system in deteriorated areas (위치기반(LBS) 쇠퇴지역 재난재해 위험성 예측 시스템 구축)

  • Byun, Sung-Jun;Cho, Yong Han;Choi, Sang Keun;Jo, Bong Rae;Lee, Gun Won;Min, Byung-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.570-576
    • /
    • 2020
  • This study uses beacons and smartphone Global Positioning System (GPS) receivers to establish a location-based disaster/hazard prediction system. Beacons are usually installed indoors to locate users using triangulation in the room, but this study is differentiated from previous studies because the system is used outdoors to collect information on registration location and temperature and humidity in hazardous areas. In addition, since it is installed outdoors, waterproof, dehumidifying, and dustproof functions in the beacons themselves are required, and in case of heat and humidity, the sensor must be exposed to the outside, so the waterproof function is supplemented with a separate container. Based on these functions, information on declining and vulnerable areas is identified in real time, and temperature/humidity information is collected. We also propose a system that provides weather and fine-dust information for the area concerned. User location data are acquired through beacons and smartphone GPS receivers, and when users transmit from declining or vulnerable areas, they can establish the data to identify dangerous areas. In addition, temperature/humidity data in a microspace can be collected and utilized to build data to cope with climate change. Data can be used to identify specific areas of decline in a microspace, and various analyses can be made through the accumulated data.

A study of a system for predicting damages of complex disasters considering the damage of major facilities (주요 시설물 피해를 고려한 복합재난 피해 예측 시스템 방안 연구)

  • Lee, Byung-Jin;Lee, Byung-Hoon;Oh, Seung-Hee;Lee, Yong-Tea;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2017
  • Recently, disasters have become bigger and more complex, and the economic damage has increased due to the increase of urbanization and the concentration of infrastructure. These large complex disasters occur simultaneously in the second and third disasters due to the first single disaster, but the existing disaster management system in Korea is less adaptable because it is divided into natural disasters and social disasters. The cause of the complex disaster is the rapid urbanization of the residential environment caused by the change of the industrial structure, and the threat factors are various and unpredictable in the living environment. Natural disasters are becoming larger and more complex due to climate change due to global warming. Unlike the past, natural disasters are likely to develop into multiple disasters such as urban paralysis. Therefore, this paper considers natural disasters and social disasters in a comprehensive concept in order to overcome limitations of disaster management by existing single factors and manage disasters effectively and rationally. It is expected that it will play a big role in protecting the lives and property of the people through the establishment of a preemptive disaster management framework.

A Study on the Calculation of GHG Emissions from General Ships by Tier3 Method (일반선박의 Tier3 수준의 온실가스 배출량 산정에 관한 연구)

  • Bong, Choon-Keun;Park, Seong-Jin;Kim, Yong-Gu;Lee, Im-Hack;Lee, Hee-Kwan;Hwang, Ui-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.701-708
    • /
    • 2011
  • In this study, the emissions of GHG from general ships were calculated by Tier1 method based on the fuel consumption, and by Tier3 method based on the activities data such as power and SFOC of each engine, sailing characteristics (e.g. time and load factor, etc.) considering the ship type. In 2009, the emissions of GHG by Tier1 and Tier3 method were appeared 28.27 mega-ton $CO_{2eq}$ and 30.81 mega-ton $CO_{2eq}$. The emissions by Tier3 were slightly more than those by Tier1. We found that the values of the sailing characteristics for surveyed data are overestimated slightly. In the near future, more detailed researches for sailing characteristics considering ship types would be needed for sailing, anchoring, and berthing condition, etc.

Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area (광주지역 PM2.5 입자 수용성 성분의 화학적 특성조사)

  • Park, Seung Shik;Cho, Sung Yong;Kim, Seung Jai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • Water soluble organic and inorganic species are important components in atmospheric aerosol particles and may act as cloud condensation nuclei to indirectly affect the climate. To characterize organic and elemental carbon(OC and EC), water-soluble organic carbon(WSOC) and inorganic ionic species contents, daily $PM_{2.5}$ measurements were made during the wintertime at an urban site of Gwangju. Average concentrations of WSOC, $NO_3^-$, $SO_4^{2-}$ and $NH_4^+$, which are major components in the water-soluble fraction in PM2.5, are 2.11, 5.73, 3.51 and $3.31{\mu}g/m^3$, respectively, representing 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%) and 11.7%(3.8~18.6%) of the $PM_{2.5}$, respectively. Abundance of water soluble organic compounds ranged from 5.4 to 35.9% of total water soluble organic and inorganic components with a mean of 17.6%. Even though the sampling was performed during the winter, the average contributions of secondary OC and WSOC, as deduced from primary OC/EC(or WSOC/EC) ratio, were relatively high, accounting for 17.9%(0~44.4%) of the total OC and 11.2%(0.0~51.4%) of the total WSOC, respectively. During the sampling period, low $SO_4^{2-}/(SO_4^{2-}+SO_2$) ratio of 0.14(0.03~0.32) and relative humidity condition in the winter time suggest an possibility of impact of long-range transport and/or aqueous transformation processes such as metal catalyzed oxidation of sulfur, in-cloud processes, etc.