Chemical Characteristics of Water Soluble Components in Fine Particulate Matter at a Gwangju area

광주지역 PM2.5 입자 수용성 성분의 화학적 특성조사

  • Park, Seung Shik (Department of Environmental Engineering, Chonnam National University) ;
  • Cho, Sung Yong (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Seung Jai (Department of Environmental Engineering, Chonnam National University)
  • 박승식 (전남대학교 환경공학과) ;
  • 조성용 (전남대학교 환경공학과) ;
  • 김승재 (전남대학교 환경공학과)
  • Received : 2009.10.26
  • Accepted : 2009.11.24
  • Published : 2010.02.28

Abstract

Water soluble organic and inorganic species are important components in atmospheric aerosol particles and may act as cloud condensation nuclei to indirectly affect the climate. To characterize organic and elemental carbon(OC and EC), water-soluble organic carbon(WSOC) and inorganic ionic species contents, daily $PM_{2.5}$ measurements were made during the wintertime at an urban site of Gwangju. Average concentrations of WSOC, $NO_3^-$, $SO_4^{2-}$ and $NH_4^+$, which are major components in the water-soluble fraction in PM2.5, are 2.11, 5.73, 3.51 and $3.31{\mu}g/m^3$, respectively, representing 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%) and 11.7%(3.8~18.6%) of the $PM_{2.5}$, respectively. Abundance of water soluble organic compounds ranged from 5.4 to 35.9% of total water soluble organic and inorganic components with a mean of 17.6%. Even though the sampling was performed during the winter, the average contributions of secondary OC and WSOC, as deduced from primary OC/EC(or WSOC/EC) ratio, were relatively high, accounting for 17.9%(0~44.4%) of the total OC and 11.2%(0.0~51.4%) of the total WSOC, respectively. During the sampling period, low $SO_4^{2-}/(SO_4^{2-}+SO_2$) ratio of 0.14(0.03~0.32) and relative humidity condition in the winter time suggest an possibility of impact of long-range transport and/or aqueous transformation processes such as metal catalyzed oxidation of sulfur, in-cloud processes, etc.

수용성 유기 및 무기성분은 대기 에어로졸 입자의 중요한 구성성분들이며 간접적으로 기후에 영향을 미치는 구름응결핵으로 작용한다. 유기 및 원소탄소(organic and elemental carbon, OC 및 EC) 및 수용성 유기탄소(water soluble OC, WSOC) 및 이온성분농도를 조사하기 위하여 광주지역에서 24시간 기준의 미세입자($PM_{2.5}$)를 측정하였다. 측정기간 중 $PM_{2.5}$ 수용성 분율의 주요성분인 WSOC, $NO_3^-$, $SO_4^{2-}$$NH_4^+$의 평균농도는 각각 2.11, 5.73, 3.51 및 $3.31{\mu}g/m^3$ 이었으며, $PM_{2.5}$ 농도의 12.0(2.9~23.9%), 21.0(12.9~37.6%), 11.6(2.5~25.9%), 및 11.7%(3.8~18.6%)를 차지하였다. 총 수용성 성분(유기+무기) 중 WSOC 화합물이 차지하는 분율은 평균 17.6%(5.4~35.9%)이었다. EC 추적자 기법을 이용해 평가한 2차 OC 및 WSOC 농도는 각각 평균적으로 0.78 및 $0.34{\mu}g/m^3$이었으며, 전체 OC 및 WSOC 중의 평균 17.9%(범위: 0~44.4%) 및 평균 11.2%(범위: 0~51.4%)를 차지하였다. 광주지역 겨울철에 측정한 $SO_4^{2-}$ 입자는 국지적인 기상산화반응보다는 장거리 이동 또는 수용액 변환과정에 의한 영향, 구름 내 변환과정 등이 황산염 입자 생성에 중요하게 작용했을 것으로 판단한다.

Keywords

References

  1. Andreae, M. O., Jones, C. D. and Cox, P. M., "Strong Presentday Aerosol Cooling implies a Hot Future," Nature, 435, 1187-1190 (2005). https://doi.org/10.1038/nature03671
  2. Andreae, M. O. and Rosenfeld, D., "Aerosol-Cloud-Precipitation Interactions. Part 1. The Nature and Sources of Cloud-Active Aerosols," Earth-Science Reviews, 89, 13-41(2008). https://doi.org/10.1016/j.earscirev.2008.03.001
  3. Jacob, D. J. and Winner, D. A., "Effect of Climate Change on Air Quality," Atmos. Environ., 108, 1-19(2008).
  4. Zhuang, G. S., Yi, Z., Duce, R. A. and Brown, P. R., "Link between Iron and Sulfur Cycles suggested by Detection of Fe(II) in Remote Marine Aerosols," Nature, 355(6360), 537-539(1992). https://doi.org/10.1038/355537a0
  5. Saxena, P. and Hildemann, L. M., "Water-soluble Organics in Atmospheric Particles: A Critical Review of the Literature and Application of Thermodynamics to Identify Candidate Compounds," J. Atmos. Chem., 24, 57-109(1996). https://doi.org/10.1007/BF00053823
  6. Malm, W. C., Molenar, J. V., Eldred, R. A. and Sisler, J. F., "Examining the Relationship among Atmospheric Aerosols and Light Scattering and Extinction in the Grand Canyon Area," J. Geophys. Res., D1(19), 19251-19265(1996).
  7. Saxena, P., Hildemann, L. M., McMurry, P. H. and Seinfeld, J. H., "Organics alter Hygroscopic Behavior of Atmospheric Particles," J. Geophys. Res., 100, 18755-18770(1995). https://doi.org/10.1029/95JD01835
  8. Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S. and Loglio, G., "Surface Tension of Atmospheric Wet Aerosol and Cloud/Fog Droplets in relation to Their Organic Carbon Content and Chemical Composition," Atmos. Environ., 34, 4853-4857(2000). https://doi.org/10.1016/S1352-2310(00)00237-5
  9. Maria, S. F., Russell, L. M., Gilles, M. K. and Myneni, S. C. B., "Organic Aerosol Growth Mechanisms and Their Climate-forcing Implications," Science, 306, 1921-1924(2004). https://doi.org/10.1126/science.1103491
  10. Decesari, S., Facchini, M. C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S., Tagliavini, E. and J.-P. Putaud, J.-P., "Chemical Features and Seasonal Variation of Fine Aerosol Water-soluble Organic Compounds in the Po Valley, Italy," Atmos. Environ., 35, 3691-3699 (2001). https://doi.org/10.1016/S1352-2310(00)00509-4
  11. Yu, J. Z., "Chemical Characterization of Water Soluble Organic Aerosols in Hong Kong," 20th Annual Conference of American Association for Aerosol Research, October 15-19, Portland, OR, USA(2001).
  12. Yu, J. Z., "Chemical Characterization of Water Soluble Organic Compounds in Particulate Matter in Hong Kong," Research Report (Ref # AS 01-018), Hong Kong EPD(2002).
  13. Park, S. S., Hur, J. J., Cho, S. Y., Kim, S. J. and Kim, Y. J., "Characteristics of Organic Carbon Species in Atmospheric Aerosol Particles at a Gwangju Area during Summer and Winter," J. Korean Soc. Atmos. Environ., 23(6), 675-688(2007). https://doi.org/10.5572/KOSAE.2007.23.6.675
  14. Turpin, B. J., Saxena, P. and Andrews, E., "Measuring and Simulating Particulate Organics in the Atmosphere: Problems and Prospects," Atmos. Environ., 34, 2983-3013(2000). https://doi.org/10.1016/S1352-2310(99)00501-4
  15. National Institute of Occupational Safety and Health(NIOSH), "Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust)," NIOSH Manual of Analytical Methods, 4th ed., Cincinnati, OH.(1996).
  16. Korea Meteorological Administration(http://www.kma.go.kr/sfc/sfc_03_02.jsp).
  17. Korea Meteorological Administration(http://www.kma.go.kr).
  18. Turpin, B. J. and Lim, H.-J., "Species Contributions To $PM_{2.5}$ Mass Concentrations: Revisiting Common Assumptions For Estimating Organic Mass," Aerosol Sci. Technol., 35, 602-610(2001). https://doi.org/10.1080/02786820119445
  19. Seinfeld, J. H. and Pandis, S. N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley, Hoboken, N. J.(1998).
  20. Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencser, A., Kiss, G., Krivacsy, Z., Molnar, A., Meszaros, E., Hansson, H. C., Rosman, K. and Zebuhr, Y., "Inorganic, Organic and Macromolecular Components of Fine Aerosol in Different Areas of Europe in relation to Their Water Solubility," Atmos. Environ., 33, 2733-2743(1999). https://doi.org/10.1016/S1352-2310(98)00362-8
  21. Viana, M., Maenhaut, W., Brink, H. M., Chi, X., Weijers, E., Querol, X., Alastuey, A., Mikuska, P. and Vecera, Z., "Comparative Analysis of Organic and Elemental Carbon Concentrations in Carbonaceous Aerosols in Three European Cities," Atmos. Environ., 41, 5972-5983(2007). https://doi.org/10.1016/j.atmosenv.2007.03.035
  22. Saarikoski, S., Sillanpaa, M., Sofiev, M., Timonen, H., Saarnio, K., Teinila, K., Karppinen, A., Kukkonen, J. and Hillamo, R., "Chemical Composition of Aerosols during a Major Biomass Burning Episode over Northern Europe in Spring 2006: Experimental and Modelling Assessments," Atmos. Environ., 41, 3577-3589(2007). https://doi.org/10.1016/j.atmosenv.2006.12.053
  23. Turpin, B. J. and Huntzicker, J. J., "Identification of Secondary Organic Aerosol Episodes and Quantification of Primary and Secondary Organic Aerosol Concentrations during SCAQS," Atmos. Environ., 29, 3527-3544(1995). https://doi.org/10.1016/1352-2310(94)00276-Q
  24. Cabada, J. C., Pandis, S. N., Subramanian, R., Robinson, A. L., Polidori, A. and Turpin, B., "Estimating the Secondary Organic Carbon Aerosol Contribution to $PM_{2.5}$ Using the EC Tracer Method," Aerosol Sci. Technol., 38, 140-155(2004).
  25. Park, S. S., Harrison, D., Pancras, P. and Ondov, J. M., "Time Resolved Elemental and Organic Carbon Measurements at the Baltimore Supersite in 2002," J. Geophys. Res. Atmos., 110, D07S06 (2005). https://doi.org/10.1029/2004JD004610