• Title/Summary/Keyword: Urban canopy model

Search Result 53, Processing Time 0.026 seconds

Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

  • Sato, T.;Hagishima, A.;Ikegaya, N.;Tanimoto, J.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties and characteristic flow patterns in high-rise building models. In particular, we focus on instantaneous flow field near the canopy and extracted flow field when homogeneous flow field were observed. As a result, six characteristic flow patterns were identified and the relationship between these flow patterns and turbulent organized structure were shown.

Analysis of Bird Diversity According to Landscape Connectivity and Structure of Urban Park (도시공원 경관 연결성 및 구조에 따른 조류 종다양성 분석)

  • Song, Wonkyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.131-142
    • /
    • 2017
  • The function of urban parks as wildlife habitats is becoming increasingly important. The urban park serves as a key area for preserving urban biodiversity. The purpose of this study is to estimate the bird species diversity in 30 parks in Cheonan city and quantitatively analyze the influence of vegetation, park structure and landscape connectivity index. As the results, a total of 27 birds species and 1,509 individuals were found at the sites and the largest number of birds were found in the Cheongsa park with 17 species. The optimal regression model was selected as the explanatory variables for the logged park area (LPA), the tree cover ratio (Co_T) and the patch betweenness centrality (PB). LPA and Co_T mean the internal characteristics of the park, and PB was the external environmental variable meaning landscape connectivity. LPA was the most important factor (73.3%) as bird habitat, and the PB could be interpreted as a factor that should be considered as important (26.7%). It will be possible to consider these environmental variables in the park and green area construction and management.

The Numerical Prediction of the Micro Climate Change by a Residential Development Region

  • Oh, Eun-Joo;Lee, Hwa Woon;Kondo, Akira;Kaga, Akikazu;Yamaguchi, Katsuhito
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.529-539
    • /
    • 2003
  • We developed a numerical model that considered the influences on the thermal environment of vegetation, water surfaces and buildings to predict micro climatic changes in a few $\textrm{km}^2$ scales; and applied this model to the Mino residential development region in Osaka Prefecture by using a nested technique. The calculated temperatures and winds in the residential development region reasonably agreed with the observed ones. We then investigated the influences on the thermal environment of the construction of a dam, the change of the green coverage rate. The results obtained from the numerical simulations were qualitatively reasonable.

High-resolution Meteorological Simulation Using WRF-UCM over a Coastal Industrial Urban Area (WRF-UCM을 이용한 연안산업도시지역 고해상도 기상 모델링)

  • Bang, Jin-Hee;Hwang, Mi-Kyoung;Kim, Yangho;Lee, Jiho;Oh, Inbo
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • High-resolution meteorological simulations were conducted using a Weather Research and Forecasting (WRF) model with an Urban Canopy Model (UCM) in the Ulsan Metropolitan Region (UMR) where large-scale industrial facilities are located on the coast. We improved the land cover input data for the WRF-UCM by reclassifying the default urban category into four detailed areas (low and high-density residential areas, commercial areas, and industrial areas) using subdivided data (class 3) of the Environmental and Geographical Information System (EGIS). The urban area accounted for about 12% of the total UMR and the largest proportion (47.4%) was in the industrial area. Results from the WRF-UCM simulation in a summer episode with high temperatures showed that the modeled temperatures agreed greatly with the observations. Comparison with a standard WRF simulation (WRF-BASE) indicated that the temporal and spatial variations in surface air temperature in the UMR were properly captured. Specifically, the WRF-UCM reproduced daily maximum and nighttime variations in air temperature very well, indicating that our model can improve the accuracy of temperature simulation for a summer heatwave. However, the WRF-UCM somewhat overestimated wind speed in the UMR largely due to an increased air temperature gradient between land and sea.

Analyzing Change of Discomfort Index for Transpiration of Street Tree (도시 가로수의 증산 작용으로 인한 불쾌지수 변화 분석)

  • Yun, Seok-Hwan;Lee, Dong-Kun;Park, Chae-Yeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.29-43
    • /
    • 2020
  • Thermal environment of city is getting worse due to severe urban heat island caused by climate change and urbanization. The cooling effect of street tree is regarded as a effective way to ameliorate the urban heat environment. The effect is largely made up of shadow formation and transpiration. This study aims to identify how the transpiration affects the discomfort index by analyzing comprehensive impact of the transpiration on the air temperature and relative humidity. The changes in the amount of transpiration, air temperature, and relative humidity were estimated for Seogyo-dong area which has a lot of floating population in Seoul, at 2 p.m. in dry day in July and August. On average, the transpiration of the street tree decreased the temperature 0.3℃ and increased the relative humidity 2.6% in an hour. As a result of these changes in temperature and humidity, the discomfort index rose mostly(0.036 on average). It was always get rise especially on the day when the discomfort index was above 80(0.05 on average). However, compared with the significant change in temperature and humidity, the variation of the discomfort index itself was very slight(up to 0.107). Therefore, the effect of transpiration by the street trees might not be effective in the planning to improve the thermal environment(especially on the day when the discomfort index is high). It is necessary to select the species of trees and planting location considering the cooling effect of shade formation synthetically.

Definition of Invasive Disturbance Species and its Influence Factor: Review (침입교란종 개념 정립 및 영향요인 고찰)

  • Kim, Eunyoung;Song, Wonkyong;Yoon, Eunju;Jung, Hyejin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.155-170
    • /
    • 2016
  • This study established the definition of invasive disturbance species for a sustainable management and biodiversity, and derived the influence factors caused by the species. To define the species, the paper reviewed similar words such as alien species and invasive species, using standard definitions. Also reviewed the results of recent research on the factors of the species. The paper defined the invasive disturbance species as an species whose establishment and spread threaten ecosystems, habitats or species with economic or environmental harm including native and non-native. Through the reviews, The factors were classified as geographic (altitude, slope, and soil, etc.), climate (temperature, precipitation, climate change, etc.) and, anthropogenic (land use, population, road, and human activity, etc.), and species & vegetation structure (species property, local-species richness, and canopy, etc.). Especially, human activity such as urbanization and highways may be associated with both higher disturbance and higher propagule pressure. In the further study, it is required development of mitigation strategies and vegetation structure model against invasive disturbance species in urban forest based on this study.

A Study on Urban Tree Canopy Artificial Intelligence Model for Carbon Neutrality in the Face of Climate Crisis (기후 위기에 맞서 탄소중립을 위한 도시 나무 캐노피 인공지능 모델 연구)

  • Jung, Jisun;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.529-531
    • /
    • 2022
  • 기후 위기가 대두되며 탄소중립에 많은 관심이 쏟아지고 있다. 탄소중립을 실천하기 위한 여러 가지 방법 중 도시의 수목을 관리하는 것은 탄소배출 저감, 대기질 개선 등의 환경적인 긍정적 효과를 얻을 수 있다. 수종별 온실가스 흡수량과 흡수 계수에는 차이가 있지만 도시 나무 캐노피를 증가시키면 온실가스 흡수량도 증가한다. 본 논문은 탄소정보공개 프로젝트(CDP)에서 제공하는 데이터를 기반으로 도시의 녹지 지대를 구글 지도(Google Map) 위성사진을 통해 찾아내고 지니 계수(Gini Coefficient)를 통해 도심 녹지 균형을 비교하였다. 향후 도시 수목과 녹지 데이터를 축적해 기초자료가 쌓이면 도시환경의 지표로 활용될 수 있을 것으로 기대된다.

Performance Evaluation of the High-Resolution WRF Meteorological Simulation over the Seoul Metropolitan Area (WRF 모형의 수도권 지역 상세 국지 기상장 모의 성능 평가)

  • Oh, Jun-Seo;Lee, Jae-Hyeong;Woo, Ju-Wan;Lee, Doo-Il;Lee, Sang-Hyun;Seo, Jihyun;Moon, Nankyoung
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.257-276
    • /
    • 2020
  • Faithful evaluation of the meteorological input is a prerequisite for a better understanding of air quality model performance. Despite the importance, the preliminary meteorological assessment has rarely been concerned. In this study, we aim to evaluate the performance of the Weather Research and Forecasting (WRF) model conducting a year-long high-resolution meteorological simulation in 2016 over the Seoul metropolitan area. The WRF model was configured based on a series of sensitivity simulations of initial/boundary meteorological conditions, land use mapping data, reanalysis grid nudging method, domain nesting method, and urban canopy model. The simulated results of winds, air temperature, and specific humidity in the atmospheric boundary layer (ABL) were evaluated following statistical evaluation guidance using the surface and upper meteorological measurements. The statistical evaluation results are presented. The model performance was interpreted acceptable for air quality modeling within the statistical criteria of complex conditions, showing consistent overestimation in wind speeds. Further statistical analysis showed that the meteorological model biases were highly systematic with systematic bias fractions (fSB) of 20~50%. This study suggests that both the momentum exchange process of the surface layer and the ABL entrainment process should be investigated for further improvement of the model performance.

A Study of Factors Influencing of Temperature according to the Land Cover and Planting Structure in the City Park - A Case Study of Central Park in Bundang-gu, Seongnam - (도시공원의 토지피복 및 식재구조에 따른 온도 영향요인 규명 연구 - 성남시 분당구 중앙공원을 사례로 -)

  • Ki, Kyong-Seok;Han, Bong-Ho;Hur, Ji-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.801-811
    • /
    • 2012
  • The purpose of this study is to find out how land cover and planting of an urban park influence temperature. Field research on the land cover and planting status was conducted for Bundang Central Park in Sungnam-si. 30 study plots in the site were selected to closely analyze land cover type and planting structure. The temperature was measured 10 times for each plot. Land coverage type, planting type, planting layer structure and green space area (the ratio of green coverage, GVZ) were chosen as factors impacting temperature and statistics were analyzed for the actual temperature measured. Analysis on how the land coverage type influences temperature showed that planting site had a low temperature and that grassland and paved land had a high temperature. When it comes to planting type, the temperature at the land planted with conifers and broad-leaved trees was low, while the temperature at grassland and paved land was high. With regard to planting layer structure, canopy and canopy-underplanting type showed low temperature, while grassland and paved land showed high temperature. An analysis on the relation between green space area and temperature found out that both ratio of green coverage and GVZ had a high level of negative correlation with the temperature measured. According to regression model of green space area and the temperature measured, for every 1% increase in the ratio of green coverage, temperature is expected to lower by $0.002^{\circ}C$. Also, for every $1m^3/m^2$ increase in GVZ, temperature is expected to go down by $0.122^{\circ}C$.

Vegetation Restoration Model of Pinus thunbergii in Urban Areas (도시지역 곰솔림의 식생복원모델)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2011
  • The purpose of this study is suggest to restoration model of Pinus thunbergii in Saha-gu, Busan Metropolitan City. The result of this study is summarized as follows; As the results of this study, vegetation restoration model is presented by separating community planting and edge planting. The community planting species of tree layer were Pinus thunbergii and Quercus acutissima and Quercus dentata and Quercus serrata and Quercus alienna and Quercus variabilis. The community planting species of subtree layer were Platycarya strobilacea and Prunus sargentii and Styrax japonica and Eurya japonica and Morus bombycis. The community planting species of shrub layer are Ulmus pavifolia and Ulmus davidiana and Lindera obtusiloba and Elaeagnus macrophylla and Mallotus japonicus and Ligustrum obtusifolium and Sorbus alnifolia and Rhus trichocarpa and Zanthoxylum schinifolium and Rosa wichuraiana and Rhus chinensis and Viburnum erosum and Rhododendron mucronulatum and Rhododendron yedoense and Indigofera pseudotinctoria. And the planting species of edge vegetation are Japanese Angelica and Symplocos chinensis and Pittosporum tobira and Lespedeza maximowiczii and Lespedeza bicolor and Rubus coreanus and Rubus idaeus and Vitis thunbergii and Ampelopsis brevipedunculata and Rosa multiflora. Considering the population of individuals up to layers in each $400m^2$ area, it was composed of 24 in tree layer, 35 in subtree layer, 410 in shrub layer and 34% herb layer in the Pinus thunbergii community. And the average of breast-high area and canopy area was $10,852cm^2$ in tree layer, in subtree layer $1,546cm^2$, in shrub layer $1,158,660cm^2$. The shortest distance between trees was calculated as 2.0m in tree layer, 1.9m in subtree layer.