Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.1.45

High-resolution Meteorological Simulation Using WRF-UCM over a Coastal Industrial Urban Area  

Bang, Jin-Hee (Environmental Health Center, University of Ulsan College of Medicine)
Hwang, Mi-Kyoung (Environmental Health Center, University of Ulsan College of Medicine)
Kim, Yangho (Environmental Health Center, University of Ulsan College of Medicine)
Lee, Jiho (Environmental Health Center, University of Ulsan College of Medicine)
Oh, Inbo (Environmental Health Center, University of Ulsan College of Medicine)
Publication Information
Journal of Environmental Science International / v.29, no.1, 2020 , pp. 45-54 More about this Journal
Abstract
High-resolution meteorological simulations were conducted using a Weather Research and Forecasting (WRF) model with an Urban Canopy Model (UCM) in the Ulsan Metropolitan Region (UMR) where large-scale industrial facilities are located on the coast. We improved the land cover input data for the WRF-UCM by reclassifying the default urban category into four detailed areas (low and high-density residential areas, commercial areas, and industrial areas) using subdivided data (class 3) of the Environmental and Geographical Information System (EGIS). The urban area accounted for about 12% of the total UMR and the largest proportion (47.4%) was in the industrial area. Results from the WRF-UCM simulation in a summer episode with high temperatures showed that the modeled temperatures agreed greatly with the observations. Comparison with a standard WRF simulation (WRF-BASE) indicated that the temporal and spatial variations in surface air temperature in the UMR were properly captured. Specifically, the WRF-UCM reproduced daily maximum and nighttime variations in air temperature very well, indicating that our model can improve the accuracy of temperature simulation for a summer heatwave. However, the WRF-UCM somewhat overestimated wind speed in the UMR largely due to an increased air temperature gradient between land and sea.
Keywords
Meteorological simulations; WRF-UCM; Ulsan; Industrial area; Air temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yi, C., An, S. M., Kim, K., Kwon, H. G., Min, J. S., 2016, Surface micro-climate analysis based on urban morphological characteristics: Temperature deviation estimation and evaluation, Atmos., 26, 445-459.   DOI
2 Yoshikado, H., 1994, Interaction of the sea breeze with urban heat islands of different sizes and locations, J. Meteor. Soc. Japan, 72, 139-143.   DOI
3 Zhang, H., Pu, Z., Zhang, X., 2013, Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain, Weather and Forecasting, 28, 893-914.   DOI
4 Zhou, X., Chen, H., 2018, Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon, Sci. Total Environ., 635, 1467-1476.   DOI
5 Borge, R., Alexandrov, V., Del Vas, J. J., Lumbreras, J., Rodriguez, E., 2008, A Comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. Environ., 42, 8560-8574.   DOI
6 Byon, J. Y., Choi, Y. J., Seo, B. G., 2010, Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul. Atmos., 20, 13-26.
7 Chen, F., Dudhia, J., 2001, Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569-585.   DOI
8 Clarke, R. H., Hess, G. D., 1975, On the relation between surface wind and pressure gradient, especially in lower latitudes, Bound-Lay. Meteorol., 9, 325-339.   DOI
9 Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman‐Clarke, S., Oridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., Zhang, C., 2011, The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems, Int. J. Climat., 31, 273-288.   DOI
10 Chen, F., Xuchao Y., Weiping, Z., 2014, WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China., Atmos. res., 138, 364-377.   DOI
11 Coutts, A. M., Beringer, J., Tapper, N. J., 2007, Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia, J. App. Meteorol. Clim., 46, 477-493.   DOI
12 Environmental Geographic Information Services (EGIS), 2019, http://egis.me.go.kr/map/map.do?type=land
13 Grossman-Clarke, S., Zehnder, J. A., Loridan, T., Grimmond, C. S. B., 2010, Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area, J. Appl. Meteor. Climat., 49, 1649-1664.   DOI
14 Freitas, E. D., Rozoff, C. M., Cotton, W. R., Dias, P. L. S., 2007, Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sao Paulo, Brazil, Bound-Lay. Meteorol., 122, 43-65.   DOI
15 Grimmond, C. S. B., Oke, T. R., 1999, Heat storage in urban areas: Local-scale observations and evaluation of a simple model, J. App. Meteorol., 38, 922-940.   DOI
16 Grimmond, S., 2007, Urbanization and global environmental change: local effects of urban warming, Geog. J., 173, 83-88.   DOI
17 Industrial Land Information System (ILIS), 2019, https://www.industryland.or.kr/
18 Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Tremback, C. J., Hao, W., Alapaty, K., 2001, Evaluating the performance of regional-scale photo -chemical modeling systems: Part I-Meteorological predictions. Atmos. Environ., 35, 4159-4174.   DOI
19 Holt, T., Pullen, J., 2007, Urban canopy modeling of the New York city metropolitan area: A comparison and validation of single-and multilayer parameterizations. Mon. Weather Rev., 135, 1906-1930.   DOI
20 Hwang, M. K., Kim, Y. K, Oh, I. B., Kang, Y. H., 2010, High-resolution simulation of meteorological fields over the coastal area with urban buildings, J. Korean Soc. Atmos. Environ., 26, 137-150.   DOI
21 Kimura, F., Takahashi, S., 1991, The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo metropolitan area: A numerical experiment, Atmos. Environ., 25, 155-164.   DOI
22 Jeong, J. H., Kim, Y. K., 2009, The application of high -resolution land cover and its effects on near-surface meteorological fields in tow different coastal areas, J. Korean Soc. Atmos. Environ., 25, 432-449.   DOI
23 Jeong, J. H., Oh, I. B., Ko, D. K., Kim, Y. K., 2011, The characteristics of seasonal wind fields around the Pohang using cluster analysis and detailed meteorological model, J. Environ. Sci. Int., 20, 737-753.   DOI
24 Kim, H. O., Yeom, J. M., 2012, Effect of the urban land cover types on the surface temperature case study of Ilsan new city, Kor. J. Rem. Sens., 28, 203-214.   DOI
25 Kinouchi, T., Yoshitani, J., 2001, Simulation of the urban heat island in Tokyo with future possible increases of anthropogenic heat, vegetation cover and water surface. Proceedings of 2001 International Symposium on Environmental Hydraulics, Arizona, USA.
26 Li, D., Bou-Zeid, E., Baeck, M. L., Jessup, S., Smith, J. A., 2013, Modeling land surface processes and heavy rainfall in urban environments: Sensitivity to urban surface representations, J. Hydrometeorol., 14, 1098-1118.   DOI
27 Kusaka, H., Chen, F., Tewari, M., Dudhia, J., Gill, D. O., Duda, M. G., Wang, W., Miya, Y., 2012, Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model, J. Meteor. Soc. Japan. Ser. II, 90, 33-45.
28 Lee, B. R., Lee, D. G., Nam, K. Y., Lee, Y. G., Kim, B. J., 2015, Study on heat environment changes in Seoul metropolitan area using WRF-UCM: A comparison between 2000 and 2009, Atmos., 25, 483-499.   DOI
29 Lee, S. H., Kim, S. W., Angevine, W. M., Bianco, L., McKeen, S. A., Senff, C. J., Trainer, M., Tucker, S. C., Zamora, R. J., 2011, Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign, Atmos. Chem. Phys., 11, 2127-2143.   DOI
30 Lee, S. H., Song, C. K., Baik, J. J., Park, S. U., 2009, Estimation of anthropogenic heat emission in the Gyeong-In region of Korea, Theor. Appl. Climat., 96, 291-303.   DOI
31 Ma, S., Pitman, A., Hart, M., Evans, J. P., Haghdadi, N., MacGill, I., 2017, The impact of an urban canopy and anthropogenic heat fluxes on Sydney's climate, Int. J. Climatol., 37, 255-270.   DOI
32 Mahfouf, J. F., Richard, E., Mascart, P., 1987, The influence of soil and vegetation on the development of mesoscale circulations, J. Clim. Appl. Meteorol., 26, 1483-1495.   DOI
33 Miao, S., Li, P., Wang, X., 2009, Building morphological characteristics and their effect on the wind in Beijing. Advances in Atmos. Sci., 26, 1115.   DOI
34 National Centers for Environmental Information (NOAA), 2019, https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
35 Sharma, A., Fernando, H. J., Hellmann, J., Chen, F., 2014, Sensitivity of WRF model to urban parameterizations, with applications to Chicago metropolitan urban heat island, ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, Chicago, Illinois, USA.
36 Oke, T. R., 1995, The heat island of the urban boundary layer: characteristics, causes and effects. In wind climate in cities, Springer Netherlands. 81-107.
37 Palau, J. L., Perez-Landa, G., Dieguez, J. J., Monter, C., Millan, M. M., 2005, The importance of meteoro -logical scales to forecast air pollution scenarios on coastal complex terrain. Atmos. Chem. Phys., 5, 2771-2785.   DOI
38 Farr, T. G., Kobrick, M., 2007, The shuttle radar topography mission, Rev. Geophys., 45, 1-33.
39 Park, S. Y., Lee, H. W., Kim, D. H., Lee, S. H., 2010, Numerical study on wind resources and forecast around coastal area applying inhomogeneous data to variational data assimilation, J. Environ. Sci. Int., 19, 983-999.   DOI
40 Rizwan, A. M., Dennis, L. Y., Chunho, L. I. U., 2008, A Review on the generation, determination and mitigation of Urban Heat Island, J. Environ. Sci., 20, 120-128.   DOI
41 Song, B. G., Park, K. H., 2013, Air ventilation evaluation at nighttime for the construction of wind corridor in urban area, J. Korean Assoc. Geogr. Inf. Stud., 16, 16-29.   DOI
42 Suzuki, R., 1991, The response of the surface wind speed to the synoptic pressure gradient in central Japan, J. Meteor. Soc. Japan. Ser. II, 69, 389-399.   DOI
43 Oh, I. B., Bang, J. H., Kim, Y. H., 2015, Meteorological characteristics in the Ulsan metropolitan region: Focus on air temperature and winds, J. Korean Soc. Atmos. Environ., 31, 181-194.   DOI