• Title/Summary/Keyword: Urban Tree

Search Result 457, Processing Time 0.029 seconds

Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction (커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용)

  • Ju-Pyo Hong;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.594-609
    • /
    • 2023
  • TBM (Tunnel Boring Machine) method is gaining popularity in urban and underwater tunneling projects due to its ability to ensure excavation face stability and minimize environmental impact. Among the prominent models for predicting disc cutter life, the NTNU model uses the Cutter Life Index(CLI) as a key parameter, but the complexity of testing procedures and rarity of equipment make measurement challenging. In this study, CLI was predicted using multiple linear regression analysis and tree-based machine learning techniques, utilizing rock properties. Through literature review, a database including rock uniaxial compressive strength, Brazilian tensile strength, equivalent quartz content, and Cerchar abrasivity index was built, and derived variables were added. The multiple linear regression analysis selected input variables based on statistical significance and multicollinearity, while the machine learning prediction model chose variables based on their importance. Dividing the data into 80% for training and 20% for testing, a comparative analysis of the predictive performance was conducted, and XGBoost was identified as the optimal model. The validity of the multiple linear regression and XGBoost models derived in this study was confirmed by comparing their predictive performance with prior research.

The Effects of the Biodiversity Increase after Creation of the Artificial Wetland -The Case of Ecological Pond at Seoul Technical High School- (인공습지 조성후 생물다양성 증진 효과에 관한 연구 -서울공고 생태연못을 중심으로-)

  • 김귀곤;조동길
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.3
    • /
    • pp.1-17
    • /
    • 1999
  • The purpose of this study is to evaluate the creation techniques of artificial wetland, one of biotopes developed to promote biodiversity in urban areas, and to look for improvement steps. Specifically, artificial wetland creation techniques were categorized into living environment and living creature classification. Being living conditions for creations, habitat environment was reviewed with a focus on water and soil environments. Living creatures were classified into plants, insects, fish, and birds. The evaluation of creation techniques was done in post-construction evaluation while considering the creation of habitats for living creatures. Intervention by users, changes in living environment and living species, and relevance of creation techniques were reviewed. Key results of this study are as follows. (1) Water environment for the living environment of creatures provides a suitable environment conditions for the living of creatures through a process easing the use of piped water. Various water depths and embankment appear to have a positive impact on the living of aquatic life. In particular, embankment covered in soil naturally played an important role as a place for the activities of aquatic insects and young fish as well as the growth of aquatic plants. (2) Various aquatic and ground plants to promote insect-diversity, shallow water, and old-tree logs had contributed greatly in increasing the types and number of insects. Aquatic insects. Aquatic insects were seen much particularly in areas where aquatic plants are rich but water is shallow than any other areas. (3) A space piled with stone to provide habitats for fish was not much used. However, it was observed that fish used embankment built with natural stones and embankment using logs in areas where water is deep. In addition, it was confirmed that 1,500 fish that had been released propagated using various depths and places for birth. (4) It was analyzed that techniques (creation of island, log setting, and creation of man-made bird nests) to provide habitats and to attract birds are not serving their roles. In such a case, it is believed that species had not increased due to the smallness as well as isolated features of the area. Based on theoretical review, they are judged to be areas that are likely to be used when a greater variety of birds is introduced. It is judged that attracting and keeping more birds at the site, such spaces need to be linked systematically in the future in terms of building eco-network while ensuring an adequate living areas. (5) In the study areas, users intervened greatly. As a result, a blockage was created preventing the normal growth of plants and non-indigenous plants were introduced. In order to limit the intervention by users, setting enough buffer zones, and environment education programs were urgently required. D/H=1>Hyangkyo> houses on the river>temples>lecture halls. D/H ratio of the backside areas is as follows. D/H=1>Hyangkyo>houses on the river>lecture halls. 4. Inner garden were planted deciduous than evergreen trees with Lagerstroemia indica. Enclosed dominant trees were planted by Pinus densiflora, Querces seuata. construct GEM strain, and examined for the expression and functional stability in microcosms.

  • PDF

Correlation Between the Microclimate and the Crown of Platanus orientalis and Ulmus davidiana (버즘나무(Platanus orientalis)와 느릅나무(Ulmus davidiana)의 수관부와 미기후간의 상호 관계)

  • Lee, Jae-yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.793-799
    • /
    • 2016
  • This study examined Platanus orientalis and Ulmus davidiana planted in downtown parks to identify the correlations among microclimatic factors such as temperature in the crown, air flow, and wind speed. For the field survey, measurements were taken at 1 hour intervals from 09:00 am to 06:00 pm in August. For the measurement of microclimatic factors, data on temperature, light intensity, air flow, and wind speed were collected using a quantum sensor (PAR Quantum Sensor SKP215), a precision thermometer (Pt1000-Sensor), and a combination anemometer (1467 G4 & HG4). The results of the analysis demonstrated that both Platanus orientalis and Ulmus davidiana, showed a greater cooling effect inside the crown as compared with the outside temperature. The cooling effect inside the crown was more evident with air flow and wind speed factors. With relation to wind, the inner temperature of the crown of Platanus orientalis decreased due to air flow while that of Ulmus davidiana decreased due to wind speed. With no wind, the average variation in temperature inside the crown was $-0.9^{\circ}C$ for Ulmus davidiana and $-0.958^{\circ}C$ for Platanus orientalis, indicating that Platanus orientalis was relatively more effective in lowering the temperature of the planting space than Ulmus davidiana. This study is significant because it shows that different tree species have different effects on the microclimate and that factors affecting the formation of the microclimate of trees may vary with species. Further studies on species other than broad leaf trees, such as evergreen trees and shrubs, are required in order to plan the distribution of landscaping trees that are effective in regulating the microclimate within urban green spaces.

Developing Landscape Analysis Method for Forest Fire Damaged Area Restoration Using Virtual GIS (Virtual GIS를 이용한 산불피해지 복구 경관분석기법 개발)

  • Jo, Myung-Hee;Lee, Myung-Bo;Kim, Joon-Bum;Lim, Ju-Hun;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • In Korea the number of forest fire occurrence and its damaged area have increased drastically and the plans for afforestation such as sound erosion control restoration and forestation have performed to restore for forest fire damaged area. In this study fire resistant forest was developed by selecting fire resistance tree species and applying GIS analysis, considering the characteristic of forest fire and location environment in forest fire damaged area along the east coast. Moreover, it showed the possibility of how spatial information technology such as virtual GIS could be applied during restoring forest fire damaged area and approaching landscape ecology researches. Especially the fire resistant forest was established by using GIS analysis against large scaled forest fires then the best forest arrangement was performed through this fire resistant forest species and 3D modeling in study area. In addition, the forest landscape was established through site index on passing years and then 3D topography and tracking simulation, which is very similar to real world, were constructed by using virtual GIS.

  • PDF

Evaluation of Air Ion According to the Type of Ridge in Urban Park -Focused on Tangeumdae Park in ChungJu- (도심 산지형 공원 능선부 식생유형에 따른 공기이온 평가 - 충주시 탄금대 공원을 대상으로 -)

  • Kim, Jeong Ho;Lee, Sang Hoon;Yoon, Yong Han
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.587-595
    • /
    • 2019
  • This study analyzed the influence of the environmental factor of each vegetation type in an urban, mountainous park (Tangeumdae Park in Chungju) on air ion. The measuring points were divided according to the tree species, diameter at breast height, crown density, and layered structure, and the meteorological factors and the air ion were measured. The results of the measurement showed the average generation of positive ions of $610.90{\pm}50.27ea/cm^3$, the average generation of negative ions of $723.58{\pm}64.25ea/cm^3$, and the air ion index of $1.19{\pm}0.10$. The results of the analysis, according to the vegetation type, are as follows. Firstly, the air ion varied according to the species, the chest diameter at breast height, and the layered structure, and was analyzed to be statistically significant. Secondly, the air ion and the vegetation type showed a positive correlation with the species, diameter at breast height, crown density, and layered structure. The cation showed a negative correlation with the species, diameter at breast height, and the crown density, and the anion showed a positive correlation with the species, the diameter at breast height, crown density, and layered structure. Thirdly, the ion index in ridges had a higher correlation with the vegetation type than the meteorological factors. In detail, the correlation was higher in the species > layered structure > crown density > diameter at breast height. This study had the limitation of evaluating air ions in the ridge. Therefore, future studies on air ion should consider both terrain structure and vegetation type and analyze the seasonal changes and comparison.

Comparison of heavy metal uptake of LID and roadside plants (도로변 및 LID 시설 식재 식물의 중금속 축적량 비교)

  • Lee, YooKyung;Choi, Hyeseon;Reyes, Nash Jett;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • Urban stormwater runoff contains heavy metals that accumulate in on-site treatment systems, thus resulting to facility deterioration and maintenance problems. In order to resolve these problems, low impact development (LID) technologies that promote natural materials circulation are widely used. LID facilities are capable of treating heavy metals in the runoff by means of plant uptake; however, the uptake or phytoremediation capabilities of plants have not been studied extensively, making it difficult to select the most suitable plant species for a certain LID design. This study investigated the vegetative components of an LID facility, roadside plants, and plants in landscape areas with different heavy metal exposure and frequency to determine the uptake capabilities of different plant species. The plants harvested inside the LID facilities and roadsides with high vehicular traffic exhibited greater heavy metal concentrations in their tissues as compared with the plants in landscape areas. Generally, the accumulation of heavy metals in the plant tissues were found to be influenced by the environmental characteristics (i.e. influent water quality, air pollution level, etc.). Dianthus, Metasequoia, Rhododendron lateritium, and Mugwort were found to be effective in removing Zn in the urban stormwater runoff. Additionally, Dianthus, Metasequoia, Mugwort, and Ginkgo Biloba exhibited excellent removal of Cu. Cherry Tree, Metasequoia, and mugwort efficiently removed Pb, whereas Dianthus was also found to be effective in treating As, Cr, and Cd in stormwater. Overall, different plant species showed varying heavy metal uptake capabilities. The results of this study can be used as an effective tool in selecting suitable plant species for removing heavy metals in the runoff from different land use types.

A Study on Efficient Sidewalk Green Space Development for Improving Urban Thermal Environments and Enhancing Pedestrian Comfort - Focused on the Derivation of Parameters for Design, and Proposing Methods for Green Space Creation - (도시열환경 개선 및 보행자 열 쾌적성 증대를 위한 효율적 가로녹지 조성방안 연구 - 계획 및 설계를 위한 매개변수 도출과 녹지조성 방법 제안을 중심으로 -)

  • Park, Ju-Hyeon;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.21-38
    • /
    • 2024
  • This study aims to establish an efficient street green area to improve the urban thermal environment and enhance pedestrian thermal comfort. Specifically, This study identified parameters applicable to green space planning and design, analyzed thermal environment mitigation mechanisms for each parameter, and, based on these findings, proposed methods for tree species selection and planting in green space planning and design. To achieve this, 61 papers were selected through a four-stage process from both domestic and foreign sources. The selected papers were analyzed, and the following main results were derived: In open street canyons with high stress levels due to low aspect ratios and high sky view factors(SVF), broadleaf trees with wide crown widths, low trunk heights, high leaf area index(LAI), and high crown heights were found effective in reducing heat, thereby increasing the amount and quality of shade. In contrast, in deep and narrow street canyons with relatively low heat stress due to high aspect ratios and low SVF, broad-leaved trees with narrow crown widths, high trunks, low crown heights, and low LAI were effective in reducing heat by enhancing ventilation. This study can serve as fundamental data for establishing standards for street green spaces to improve the thermal environment of street canyons and enhance thermal comfort of pedestrians. Additionally, it can be valuable when selecting the location and prioritizing street green spaces. Moreover, it is anticipated to be a foundational resource for creating guidelines for green space planning and design in response to climate change.

Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches (GOCI 위성영상과 기계학습을 이용한 한반도 연안 수질평가지수 추정)

  • Jang, Eunna;Im, Jungho;Ha, Sunghyun;Lee, Sanggyun;Park, Young-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.221-234
    • /
    • 2016
  • In Korea, most industrial parks and major cities are located in coastal areas, which results in serious environmental problems in both coastal land and ocean. In order to effectively manage such problems especially in coastal ocean, water quality should be monitored. As there are many factors that influence water quality, the Korean Government proposed an integrated Water Quality Index (WQI) based on in situmeasurements of ocean parameters(bottom dissolved oxygen, chlorophyll-a concentration, secchi disk depth, dissolved inorganic nitrogen, and dissolved inorganic phosphorus) by ocean division identified based on their ecological characteristics. Field-measured WQI, however, does not provide spatial continuity over vast areas. Satellite remote sensing can be an alternative for identifying WQI for surface water. In this study, two schemes were examined to estimate coastal WQI around Korea peninsula using in situ measurements data and Geostationary Ocean Color Imager (GOCI) satellite imagery from 2011 to 2013 based on machine learning approaches. Scheme 1 calculates WQI using estimated water quality-related factors using GOCI reflectance data, and scheme 2 estimates WQI using GOCI band reflectance data and basic products(chlorophyll-a, suspended sediment, colored dissolved organic matter). Three machine learning approaches including Random Forest (RF), Support Vector Regression (SVR), and a modified regression tree(Cubist) were used. Results show that estimation of secchi disk depth produced the highest accuracy among the ocean parameters, and RF performed best regardless of water quality-related factors. However, the accuracy of WQI from scheme 1 was lower than that from scheme 2 due to the estimation errors inherent from water quality-related factors and the uncertainty of bottom dissolved oxygen. In overall, scheme 2 appears more appropriate for estimating WQI for surface water in coastal areas and chlorophyll-a concentration was identified the most contributing factor to the estimation of WQI.

Scenario-Based Analysis on the Effects of Green Areas on the Improvement of Urban Thermal Environment (녹지 조성 시나리오에 따른 도시 열환경 개선 효과 분석)

  • Min, Jin-Kyu;Eum, Jeong-Hee;Sung, Uk-Je;Son, Jeong-Min;Kim, Ju-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.1-14
    • /
    • 2022
  • To alleviate the urban heat island phenomenon, this study aims to quantitatively analyze the effects of neighborhood green spaces on the improvement of the thermal environment based on detailed scenarios of five types of green spaces, including parks, pocket parks, parking lot greening, roadside planting, and rooftop-wall greening. The ENVI-met 4.4.6v model, a microclimate simulation program, was used to analyze the effects of green spaces. As a result, it was found that the air temperature decreased as the planting density of the park increased, but the thermal comfort index PET, which is the degree of heat sensation felt by humans, was not directly proportional to temperature. The establishment of a pocket park reduced air temperature up to a radius of 56m, while the range of temperature reduction increased by about 12.5% when three additional pocket parks were established at 250m intervals. Unlike the air temperature, PET was only affected in the vicinity of the planted area, so there was no significant difference in the thermal comfort of the surrounding environment due to the construction of pocket parks. Changing the surface pavement from asphalt to lawn blocks and implementing rooftop or wall greening did not directly act as solar shading but positively affected air temperature reduction; PET showed no significant difference. Roadside planting showed a higher air temperature reduction effect as the planting interval was narrower, but PET was not directly proportional to tree density. In the case of shrub planting under trees, it did not significantly affect the air temperature reduction but positively affected the improvement of thermal comfort. This study can outline strategies for constructing neighborhood green spaces to solve the urban heat island phenomena and establish detailed strategies for efficient thermal environment improvements.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.