• Title/Summary/Keyword: Urban Traffic Information Systems

Search Result 152, Processing Time 0.029 seconds

A Novel Vehicle Counting Method using Accumulated Movement Analysis (누적 이동량 분석을 통한 영상 기반 차량 통행량 측정 방법)

  • Lim, Seokjae;Jung, Hyeonseok;Kim, Wonjun;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • With the rapid increase of vehicles, various traffic problems, e.g., car crashes, traffic congestions, etc, frequently occur in the road environment of the urban area. To overcome such traffic problems, intelligent transportation systems have been developed with a traffic flow analysis. The traffic flow, which can be estimated by the vehicle counting scheme, plays an important role to manage and control the urban traffic. In this paper, we propose a novel vehicle counting method based on predicted centers of each lane. Specifically, the centers of each lane are detected by using the accumulated movement of vehicles and its filtered responses. The number of vehicles, which pass through extracted centers, is counted by checking the closest trajectories of the corresponding vehicles. Various experimental results on road CCTV videos demonstrate that the proposed method is effective for vehicle counting.

ADAPTIVE, REAL-TIME TRAFFIC CONTROL MANAGEMENT

  • Nakamiti, G.;Freitas, R.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.89-94
    • /
    • 2002
  • This paper presents an architecture for distributed control systems and its underlying methodological framework. Ideas and concepts of distributed systems, artificial intelligence, and soft computing are merged into a unique architecture to provide cooperation, flexibility, and adaptability required by knowledge processing in intelligent control systems. The distinguished features of the architecture include a local problem solving capability to handle the specific requirements of each part of the system, an evolutionary case-based mechanism to improve performance and optimize controls, the use of linguistic variables as means for information aggregation, and fuzzy set theory to provide local control. A distributed traffic control system application is discussed to provide the details of the architecture, and to emphasize its usefulness. The performance of the distributed control system is compared with conventional control approaches under a variety of traffic situations.

An approach for Traffic Signal Control using RFID in the u-City (u-City에서 RFID를 이용 교통신호제어에 관한 연구)

  • Seo, Gang-Do;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • This study proposed a traffic responsive urban traffic control system using RFID(Radio Frequency Identification) technology to get traffic information. The proposed system is a decentralized control using model predictive control. The objective of proposed system is to get traffic data using advanced technology for controlling the junctions' traffic rights. A simulation example is provided to demonstrate the applicability of the proposed model.

Traffic Information Extraction Using Image Processing Techniques (처리 기술을 이용한 교통 정보 추출)

  • Kim Joon-Cheol;Lee Joon-Whan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.75-84
    • /
    • 2003
  • Current techniques for road-traffic monitoring rely on sensors which have limited capabilities, are costly and disruptive to install. The use of video cameras coupled with computer vision techniques offers an attractive alternative to current sensors. Video based traffic monitoring systems are now being considered key points of advanced traffic management systems. In this paper, we propose the new method which extract the traffic information using video camera. The proposed method uses an adaptive updating scheme for background in order to reduce the false alarm rate due to various noises in images. also, the proposed extraction method of traffic information calculates the traffic volume ratio of vehicles passing through predefined detection area, which is defined by the length of profile occupied by cars over that of overall detection area. Then the ratio is used to define 8 different states of traffic and to interpret the state of vehicle flows. The proposed method is verified by an experiment using CCTV traffic data from urban area.

  • PDF

Applying the IoT platform and green wave theory to control intelligent traffic lights system for urban areas in Vietnam

  • Phan, Cao Tho;Pham, Duy Duong;Tran, Hoang Vu;Tran, Trung Viet;Huu, Phat Nguyen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.34-52
    • /
    • 2019
  • This paper proposes an intelligent system performing an application with assistance of an Internet of Things (IoT) platform to control a traffic lights system. In our proposed systems, the traffic lights can be remotely controlled through the Internet. Based on IoT platform, the traffic conditions at different intersections of roads are collected and the traffic lights are controlled in a central manner. For the software part, the algorithm is designed based on the green wave theory to maximize the green bandwidth of arterial roads while addressing a challenging issue: the rapid changes of parameters including cycle time, splits, offset, non-fixed vehicles' velocities and traffic flow along arterial roads. The issue typically happens at some areas where the transportation system is not well organized like in Vietnam. For the hardware part, PLC S7-1200 are placed at the intersections for two purposes: to control traffic lights and to collect the parameters and transmit to a host machine at the operation center. For the communication part, the TCP/IP protocol can be done using a Profinet port embedded in the PLC. Some graphical user interface captures are also presented to illustrate the operation of our proposed system.

Error Filtering Algorithm for Accurate Travel Speed Measurement Using UTIS (UTIS 구간통행속도 이상치 제거 알고리즘)

  • Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Jeong, Jun-Ha;Bae, Kwang-Soo;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • Travel speed is an important parameter in measurement of road traffic. UTIS(Urban Traffic Information System) was developed as a type of section detector. However, UTIS incur errors caused by irregular vehicle trajectories, wireless communication range and so on. This paper suggests a new model that use an error-filtering algorithm to improve the accuracy of travel speed measurements. In the field test, the variance of the percent errors measured by the new model was reduced. Therefore, it can be concluded that the proposed model significantly improves travel speed measuring accuracy.

Imputation Model for Link Travel Speed Measurement Using UTIS (UTIS 구간통행속도 결측치 보정모델)

  • Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Bae, Kwang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.63-73
    • /
    • 2011
  • Travel speed is an important parameter for measuring road traffic. UTIS(Urban Traffic Information System) was developed as a mobile detector for measuring link travel speeds in South Korea. After investigation, we founded that UTIS includes some missing data caused by the lack of probe vehicles on road segments, system failures and etc. Imputation is the practice of filling in missing data with estimated values. In this paper, we suggests a new model for imputing missing data to provide accurate link travel speeds to the public. In the field test, new model showed the travel speed measuring accuracy of 93.6%. Therefore, it can be concluded that the proposed model significantly improves travel speed measuring accuracy.

A Study on Evaluation Criteria of VMS User's Utility in Urban Roads (도시부도로 VMS 이용자 효용의 평가기준에 관한 연구)

  • Lim, Joon-Bum;Shin, So-Young;Kim, Tae-Hee;Park, Bum-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.36-46
    • /
    • 2011
  • At present, the number of local governments using the Traffic Information Center are increasing and drivers are utilizing its traffic information from VMS installed on roads in cities. However, the cases of the user's utility of VMS about urban roads with special characteristics different from expressways and urban highways haven't been evaluated so far. Because VMS is a medium installed from a budget to provide traffic information, it is necessary to evaluate and manage the efficiency of users. This study judged that the efficiency of the drivers using VMS of urban roads most influences the duty on alternative route information provision so that it established its evaluation criteria. In addition, it needs to raise its value by many drivers' observation of VMS. Therefore, in case of the same conditions, the installation location of VMS should be a road section with much traffic volume so its the evaluation criteria was established. At present, the study results can be utilized to raise the user's utility of VMS installed in the urban roads.

Development and Comparison of Centralized and Decentralized ATIS Models with Simulation Method

  • Kim, Hoe-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Traffic congestion is a source of significant economic and social costs in urban areas. Intelligent Transportation Systems (ITS) are a promising means to help alleviate congestion by utilizing advanced sensing, computing, and communication technologies. This paper proposes and investigates a basic and advanced ITS framework Advanced Traveler Information System (ATIS) using wireless Vehicle to Roadside (Centralized ATIS model: CA model) and Vehicle to Vehicle (DeCentralized ATIS model: DCA model) communication and assuming an ideal communication environment in the typical $6{\times}6$ urban grid traffic network. Results of this study indicate that an ATIS using wireless communication can save travel time given varying combinations of system characteristics: traffic flow, communication radio range, and penetration ratio. Also, all tested metrics of the CA and DCA models indicate that the system performance of both models is almost identical regardless of varying traffic demand and penetration ratios. Therefore, DCA model can be a reasonable alternative to the fixed infrastructure based ATIS model (CA model).

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.