International Journal of Automotive Technology, Vol. 3, No. 3, pp. 89-94 (2002)

Copyright © 2002 KSAE
1229-9138/2002/003-01

ADAPTIVE, REAL-TIME TRAFFIC CONTROL MANAGEMENT

G. NAKAMITI"" and R. FREITAS?

PRua Alaro Faria de Barros, 1371, casa 22, 13098-393-Campinas-SP-Brazil
PPaulista State University, Brazil

(Received 27 February 2001; Revised 6 March 2002)

ABSTRACT-This paper presents an architecture for distributed control systems and its underlying methodological
framework. Ideas and concepts of distributed systems, artificial intelligence, and soft computing are merged into a unique
architecture to provide cooperation, flexibility, and adaptability required by knowledge processing in intelligent control
systems. The distinguished features of the architecture include a local problem solving capability to handle the specific
requirements of each part of the system, an evolutionary case-based mechanism to improve performance and optimize
controls, the use of linguistic variables as means for information aggregation, and fuzzy set theory to provide local control.
A distributed traffic control system application is discussed to provide the details of the architecture, and to emphasize its
usefulness. The performance of the distributed control system is compared with conventional control approaches under a

variety of traffic situations.

KEY WORDS : Urban traffic control, Intelligent control, Computational intelligence

1. INTRODUCTION

Constructing traffic control systems capable of flexible,
autonomous, and intelligent behavior is an inherently
interdisciplinary and challenging task. Intelligent traffic
management systems are designed to perform well under
significant uncertainties in the system and environment
for extended periods of time, and they must be able to
compensate for significant system changes without too
much external intervention. They evolve from conven-
tional control and decision systems by adding concepts
and techniques from artificial intelligence, real-time
computing, and computational intelligence, the main
fields that join system and control theory to construct
intelligent traffic management systems.

The use of knowledge-based processing is of utmost
importance when an application encounter a sizeable
number of the members of a large set of related situations,
each requiring the selection of one response from a large
set of possible responses. In such application, it may be
more desirable to automate the process of constructing
the response than to enter all the possible responses into
the computer in advance.

An intelligent traffic management system requires
real-time computing. The issue of having software run in
real time when computation must include knowledge-
based reasoning means that performance and competence

*Corresponding author. e-mail: nakamiti @bestway.com.br

89

must be combined to deal with applications. On one
hand, the majority of control systems are real time in the
sense that the programs must run quickly enough. Know-
ledge-based processing, on the other hand, is directed
specifically toward applications, for which no conven-
tional algorithm is available, so that computation times
are usually highly variable and unpredictable. Control
system's physical and functional structures becomes
important design decisions to manage the computational
complexity and the implied real-time trade-offs. Dis-
tributed control architectures with support to efficient
communication and cooperation among agents become
essential to provide adaptability, naturalness, special-
ization, reliability, autonomy, and to handle resource
limitations. Real-time, knowledge based control systems
must agree with these requirements by trading-off bet-
ween processing power, response time, data space,
inattention, and degradation.

This paper presents an intelligent distributed traffic
management system whose basic components are auto-
nomous agents that cooperate via communication to
achieve common goals. From the methodological point
of view, the architecture supports evolutionary case-
based reasoning for learning and adaptation, and pro-
cessing of imprecise information via fuzzy set theory in
real-time. A distributed traffic network with sixteen
traffic lights in a six intersections network, implemented
based on real data from downtown Campinas (Brazil), is
included to illustrate the usefulness of the architecture

90 G. NAKAMITI and R. FREITAS

and its underlying intelligence. Simulation results and a
comparison with conventional traffic control schemes are
also discussed, together with a set of final remarks to
conclude the paper.

2. MANAGING THE URBAN TRAFFIC
NETWORK

2.1. The Architecture

The Intelligent Distributed Control System Architecture
consists of a network of cooperating, autonomous nodes
which are able to take their own decisions, and control
local devices. To achieve this, they must know the
system's structure and state, besides global goals and
constraints. Nodes have to communicate with one
another to share information.

Each node is able to reason about the network structure
because it knows its detailed neighborhood and overall
network structure. Moreover, it is capable to reason about
the global problem, and may cooperate to reach a
solution once the application context is known. The
node's knowledge, represented in the upper side of Figure
1, provides the necessary information to cooperate with
its similes (for a more detailed description of the
architecture, see (Nakamiti et al., 2000)).

The Local Problem Solver (LPS) is the basic pro-
cessing unit of the node. It is responsible for handling
ordinary situations, i.e., well-understood situations to
which heuristics or rules could be established. The LPS
basic processing scheme is as follows:

— Receive_from_network_medium(information);
— Receive_from_local_devices(information);

PN

iy Ceonsramrs 3
W 1
:
: :
S0UTH OF THE sYateM
/APH.IGAYIOII
NODE’S VIEW KNOWLEDQE
NCOE’S KNOWLEDSE
tncoming O outgaing
— PROBLEM
message SOLVER message
£
At

%’ CASE - BASED
MECHANISM

LOCAL
DATA

ACTION
DECISION

DEVICES
INTERFACE
DATA ACTION
LOGAL
DEVICES

Figure 1. Structure of a node.

— Update_system_view;

— Inform_neighbor_nodes;

— if not_able (Take_decision

(view,rules_or_heuristics))

Send_CBM(situation);
Receive_from_CBM(decision);

— Perform(decision);

— Send_neighbors(decision);

— Send_CBM(decision_performance)

An evolutive fuzzy Case-Based Mechanism (Nakamiti
and Gomide, 1994) is available to help the LPS in
complex and dynamic environments, where all possible
situations can not be modeled by the system. Its basic
processing scheme is the following:

— Receive_from_LPS(situation);

— Look_for_similar_past_cases(situation);

— Select_successful_cases;

— Combine_actions;

— Send_LPS(actions);

— Receive_from_LPS(performance);

— Decide_if_store(situation,actions,performance)

2.2. Distributed Traffic Control

The fuzzy distributed traffic-light control system consists
of a processor situated at each intersection, communi-
cating with its neighbor processors, and deciding the
settings of its local traffic-lights. There are sensors
measuring the traffic flow entering each intersection;
these sensors send data to local processors. The aim is to
optimize traffic flow, reducing the average delay of
vehicles and average queue lengths, and thus improving
the traffic quality. The strategy used to achieve
performance requirements consists in changing the green
time (and consequently the cycle length') according to
the vehicles arrivals and queue lengths.

Most of the research in fuzzy traffic control is restrict-
ed to a single intersection (Papis and Mamdani, 1977).
describes a controller for a two one-way streets
intersection, which decides the green time extension for
each way (Nakatsuyama et al., 1984). Presents a control
system for two consecutive intersections of an arterial
one-way road. Many other papers, such as (Favilla ez al.,
1993; Hoyer and Jumar, 1994; Kelsey et al.,, 1993;

'The cycle length is the time period required for one com-
plete sequence of signal indications in a traffic light. The
cycle length is usually divided into a number of phases,
each phase being a part of the time cycle allocated to one
or more traffic or pedestrian movements. The green phase
is a particular state that provides a green light (right of
way) for a particular direction. The green time represents
the time duration of the green phase.

ADAPTIVE, REAL-TIME TRAFFIC CONTROL MANAGEMENT 91

Skowronski and Shaw, 1993), present fuzzy systems for a
multi-way single intersection. The control problem for a
network of intersections still is an important issue in the
field of traffic engineering.

To study this problem, we have modeled part of
Campinas-SP (Brazil) downtown area, measured the
average arrivals and queue lengths for several inter-
sections, and developed a traffic-light control system for
the network based on the distributed architecture.

2.2.1. Local problem solver

The Local Problem Solver has the purpose of controlling
the traffic flows at its corresponding intersection.
Basically, it compares the incoming traffic and queue
lengths of the related intersections, besides its own.
Based on this information, it decides to extend or not the
current green phase, and informs its neighbors about its
decision. This basic approach is used whenever the traffic
flows are similar to the traffic flows used to settle the
traffic lights, according to (Wohl and Martin, 1967) In
this case, the Local Problem Solver makes minor
adjustments to pre-defined settings. It uses membership
functions for the vehicles’ arrivals, queues, and green
time extensions.

When the traffic flows vary from the expected ones, or
when there is an unexpected situation (such as an
accident, a game, or a parade), the strategy above may
not be reasonable. In these cases, a Case-Based
Mechanism helps the Local Problem Solver to find an
appropriate solution.

2.2.2. The case-based mechanism

The CBM’s main issues are: to identify and to retrieve
similar cases, to combine the selected cases, generating a
decision, and to manage the case-base.

To identify and to retrieve the most similar cases, the
CBM searches a tree-structured case-base. It handles the
experiences’ structures, which are divided into an
attributes’ part, an actions’ part, a results’ part, and a
complementary information’ part. Each of these parts is
composed by attributes’ values, which specify, for
example, a cars’ queue size (for more details, see
(Nakamiti and Gomide, 1994)).

In order to perform the match, let us consider the
following attributes parts for the current situation and a
stored experience:

Current situation’s (CS) attributes:
[4[XTI]ST2[?[3[2[X[3]5[3]

Stored experience’s (SE) attributes:
[(SI1]I[3[?[3[X[0[X[5]1[3]

Very few positions match perfectly, although these

experiences may be very similar. So, we have to compare
each attribute and establish a degree of proximity
(Nakamiti et al., 2000) between the current situation and
the stored experiences.

Obviously, instead of testing all the experience-base
for proximity, we firstly select a specific sub-tree or a
small group of sub-trees, which stores the most similar
cases. This is done by applying this same match above to
the group of attributes that classify the experience as a
“traffic-jam” or “(almost) empty streets”, for example.

The test for proximity is performed only to the experi-
ences belonging to the selected sub-tree(s), and eventual-
ly to correlated experiences accessed by pointer from
them. For each experience, we have the calculated degree
of proximity and the stored degree of failure/success.
These values permit us to select, for example, the two
most similar or most successful experiences.

After retrieving the most similar experiences from
their attributes part, the CBM combines, for example, the
actions part of the two most similar or most successful
experiences through genetic algorithms®. There are three
possible strategies:

— Take the actions by generic features. For illustration,
take one’s eyes (size, shape and color), the other’s nose,
and so on. This is a good strategy for inter-related or fine-
grained actions.

Actions part of experience 1:
[2]T[ax[s[2[3][t][x[1]5]6]

Actions part of experience 2:
[6[XIX[3[1[4][X[2]1]6][2]2]

Resulting actions part:
[2]iT4]3[1[4[X]2]1]1[5]6]

— Take the actions individually, “gene by gene”. When
both actions are the same, we just take their value. With
different actions, we choose one of them, avoiding ‘X’s
and ‘?’s.

Actions part of experience 1:
[2TrTafxX[s]?[3[1[X[I][5]6]

Actions part of experience 2:
[6[X[x[3[1[4]Xx[2[1]6]2]2]

Resulting actions part:
[6]1[4[3][s]4f3]t]t]t]2]2]

*Experiences may also be taken at random with very
low probability, to provide more variability and avoid
local maxima.

92 G. NAKAMITI and R. FREITAS

— Take the actions individually, choosing whatever
value between the two of the selected experiences.

Actions part of experience 1:
[2]1]4[X]s5]2[3]T][X[1]5]6]

Actions part of experience 2:
[olx[X[3]t]d4[X]2]1[6]2]2]

Resulting actions part:
(4]t]a]3]s]4fs]t]t]a]2]3]

The degree of failure/success may be used as a comple-

mentary but decisive information. If it has a definitive

tmportance, the most successful experience as a whole
will be taken. If it has no importance, any combination
may be achieved.

These mechanisms permit us to work from the best and
most similar experiences we have stored, combining
them prior of a possible adaptation. Nevertheless, mech-
anisms like these, although improving old experiences,
avoid significantly different actions, because they only
adapt previous experiences, and may lead to local
maxima. Some values or combinations of values may be
missing as the combinations go on. To surpass this
limitation, we use a probability as low as 0.04 to change
at random the values of the actions or generic actions,
depending on the strategy employed.

After generating the decision, the CBM sends it to the
LPS, and awaits the results.

The case’s results’ part is filled by watching the
effectiveness of the actions taken. For example, if a
medicine taken to lower a patient’s fever from 106°F to
98°F, and it has lowered the fever to 105°F, we may
consider this a very bad result. A good result would had
be achieved, for example, if the fever had lowered to
100°F. After achieving all the results, we are able to
calculate the degree of failure/success from them
(Nakamiti et al., 2000), mapping the values of the
linguistic variables into numbers, as for example: (very
bad =1, bad =2, regular =3, good =4, very good =35,
excellent = 6).

Standard experiences (i.e. experiences with standard
degrees of failure/success) are stored in the experience-
base only if there are few experiences of that kind (in
their subtrees) or for a little period of time. Top experi-
ences are always stored and remain in the experience-
base for a long time.

The CBM main tasks are: to identify and to retrieve
similar cases, to combine the selected cases, to generate
decision, and to manage the case-base. Information on
past cases is codified into slots of attributes, actions and
results, as in a DNA-chain, and stored in the case-base.
This information is codified through linguistic variables.

The retrieval is performed from the new situation’s
attributes, which are received from the Local Problem
Solver. Similar situations are retrieved and combined
through genetic algorithms (Goldberg, 1989). As a result,
a new decision for the new situation is generated and
applied. (For more details, see (Nakamiti and Gomide,
1994)).

After the decision application by the Local Problem
Solver, the Case-Based Mechanism observes its appropri-
ateness, verifying the resulting delays and queues. The
new case and its result are included into the case base,
allowing better decisions over time.

3. RESULTS

For comparison purposes, a simultaneous, a progressive,
and the Intelligent Distributed Control System (IDCS)
were implemented. In a simultaneous system, all signals
along a street show the same color at the same time. In a
progressive system, successive intersections have a
common cycle length, but the timing of one signal related
to the next is arranged to permit continuous movement of
vehicles through the system. We simulated a 6 inter-
sections network composed by 18 traffic-lights, as
illustrated by Figure 2.

The data used correspond to real observations of
arrival rates in downtown Campinas, on Thursdays,

Orozmbo Maia Avenue

L

Tosé Pautino St —= (1)

THIE

U [phase 1 phase 2 hase 1

|
Francisco Glicério St ® - ~—1 L— —%J; — _%_L
) [e 1

phase | phese 2 o phese 2

@e—

=i THEE

Figure 2. Intersections layout.

Delay [s]

Queue [cors]

20000 20000
Time [s] Time [s]
Approach Av. Queue Av. Delay Max. Delay
Hipes 3.4 13.2 24.4
Hsimultaneous 4.5 23.3 31.8
Progressive 4.5 23.2 30.0

Figure 3. Comparative results — (1).

ADAPTIVE, REAL-TIME TRAFFIC CONTROL MANAGEMENT 93

during the rush time. The cycle length and green time for
the simultaneous and progressive systems also corre-
spond to real observations. They were computed accord-
ing to (Wohl and Martin, 1967) and adjusted on-line by
traffic engineers to improve the system performance.
Results for other traffic situations may also be obtained in
{(Nakamit et al., 2000).

In the first 20,000 seconds simulation, illustrated by
Figure 3, we kept the same arrival rates as observed on
the intersections. It shows the behavior for the three
approaches under these conditions. The Intelligent
Distributed Control System (IDCS) presented better
performance than simultaneous and progressive systems,
demonstrating that its agents can achieve coordination. In
fact, its performance was about 24% better regarding to
queue lengths (3.4 against 4.5 vehicles), and about 43%
better regarding to average delay (13.2 against 23.2
seconds).

In the second simulation, illustrated by Figure 4, we
increased the vehicles arrival rates by 30% after 3,000
seconds. The Intelligent Distributed Control System was
capable to adapt to the environment changes, and
presented average queue lengths of 8.9 vehicles and 38.4

Queue [cars] Delay [=]
289
Ao v‘:'
20000 20000

Time [s] Time [s]
Approach Av. Queue Av. Delay Max. Delay

Hiocs 2.9 38.4 64.8
[ISimultanesus 27.1 143.1 281.7
Hprogressive 24.3 127.2 259.0

Figure 4. Comparative results — (2).

Queue [cars] Delay [s]
20| i 5 223| SR Rea ot
i 1] e
! 1 i
i i
; i
. i
; !
ﬁ\ﬁ Al
20000 20000
Time [s] Time [s]
Approach Av. Queue Av. Deloy Max. Delay
Hibcs 5.7 24.9 31.4
[Simultaneous 16.4 186.3 220.0
HProgressive 15.1 172.4 223.0

Figure 5. Comparative results — (3).

jel
[~
i)
=4

20

e

" 20000 20000
Time {s] Time [s]
Approach Av. Queue Av. Deloy Max. Delay
Hics 12.1 84.2 153.0
[Istmultaneous 16.4 166.3 220.0
HpPrograssive 15.1 172.4 223.0
Figure 6. Comparative results — (4).
Arrivals [%]
130%
1209%
100%
5000 7,13 10,000 12387 15000 0,000 Time [s]

Figure 7. Changing traffic income.

seconds of average delay. The conventional approaches
could not handle the changes, and queue lengths and
delays increased continuously. The average performance
for the IDCS was about 63% better regarding to vehicles
queue lengths and 70% better regarding to delays.
Figure 5 shows the system behavior in face of a
simulated traffic accident at the 3,000th second. This was
the average results for the whole system. The results at
the intersection in which the accident occurred are shown
in Figure 6. In the first case, the IDCS performance was
about 62% and 85% better regarding to queue lenths and
delays, respectively. In the latter case, the IDCS

Delay [s]

Queue [cars]

20000 20000
Time [s] Time [s]
Approach Av. Queue Av. Delay Max. Delay
Hibcs 4.0 15.5 33.8
Hsimuttaneous 10.9 65.7 123.4
EProgressive 8.7 50.0 101.3

Figure 8. Comparative results — (5).

94 G. NAKAMITI and R. FREITAS

performance was about 20% regarding to queue lengths
(5.7 against 15.1 vehicles) and 50% better regarding to
the average delays (82.4 against 166.3 seconds).

For the next simulations, we provided two different
settings for the conventional approaches, corresponding
to 100% and 120% of the base arrival rates, following
(Wohl and Martin, 1967). We changed the arrival rates as
illustrated by Figure 7.

Between 7,113 and 12,887 seconds, the conventional
approaches detected the arrival rates change, and were set
to 120% of the base arrival rates (Wohl and Martin,
1967). In the other periods, they were set to 100% of the
base rates. Figure 8 illustrates the simulation results.
The IDCS performance was about 54% better than
conventional approaches regarding to queue lengths (4.0
against 8.7 vehicles) and 69% better regarding to average
delays (15.5 against 50.0 seconds).

4. CONCLUSION

The incorporation of fuzzy sets concepts into intelligent
distributed systems can increase their flexibility and
adaptability, leading to an effective approach to develop
complex real-world systems. This paper presented a
traffic control system built upon a distributed architecture
that merges fuzzy logic and artificial intelligence techni-
ques into a unique architecture. The distributed traffic
control system presented has shown to achieve coor-
dination and adaptation to environment changes. The
performance obtained by the system was superior to
conventional approaches, even when the traffic condi-
tions were the same as used to settle the conventional
traffic-lights, according to well-known traffic engineer-
ing principles.

REFERENCES

Favilla, J., Machion, A. and Gomide, F. (1993). Fuzzy ‘

Traffic control: Adaptative strategies, Second IEEE
International Conference on Fuzzy Systems, San
Francisco, CA, 506-511.

Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley
Publ. Co..

Hoyer, R. and Jumar, U. (1994). Fuzzy control of traffic-
lights, Third IEEE International Conference on Fuzzy
Systems, Orlando, FL, 1526—1531.

Kelsey, R., Bisset, K. and Jamshidi, M. (1993). A
simulation environment for fuzzy control of traffic
systems, XII IFAC-World Congress, Sydney, Australia,
553-556.

Nakamiti, G., Gongalves, R. and Gomide, F. (2000).
Knowldge processing in control systems, in Know-
ledge Engineering: Systems, Techniques and Appli-
cations, Leondes, C. (Ed.), 2, Chapter 16, Academic
Press.

Nakamiti, G. and Gomide, E. (1994). An evolutive fuzzy
mechanism based on past experiences, Second
European Congress on Intelligent Techniques and Soft
Computing -EUFIT 94, Aachen, Germany, 1211-1217.

Nakatsuyama, M., Nagahashi, H. and Nishizura, N.
(1984). Fuzzy logic controller for a traffic junction in
the one-way arterial road, IX IFAC - World Congress,
Budapest, Hungary, 13-18.

Papis, C. and Mamdani, E. (1977). A fuzzy logic
controller for a traffic junction, IEEE Trans. Syst.,
Man, and Cybern., 7, 707-717.

Skowronski, W. and Shaw, L. (1993). Self-learning fuzzy
traffic controller for a traffic junction, 1. European
Congress on Intelligent Techniques and Soft
Computing - EUFIT 93, Aachen, Germany, 751-761.

Wohl, M. and Martin, B. (1967). Traffic System Analysis
for Engineers and Planners, McGraw-Hill Book Co..

