Development and Comparison of Centralized and Decentralized ATIS Models with Simulation Method

  • Kim, Hoe-Kyoung (Geographic Information Science and Technology Group, Oak Ridge National Laboratory)
  • Received : 2010.11.30
  • Accepted : 2011.02.16
  • Published : 2011.04.30

Abstract

Traffic congestion is a source of significant economic and social costs in urban areas. Intelligent Transportation Systems (ITS) are a promising means to help alleviate congestion by utilizing advanced sensing, computing, and communication technologies. This paper proposes and investigates a basic and advanced ITS framework Advanced Traveler Information System (ATIS) using wireless Vehicle to Roadside (Centralized ATIS model: CA model) and Vehicle to Vehicle (DeCentralized ATIS model: DCA model) communication and assuming an ideal communication environment in the typical $6{\times}6$ urban grid traffic network. Results of this study indicate that an ATIS using wireless communication can save travel time given varying combinations of system characteristics: traffic flow, communication radio range, and penetration ratio. Also, all tested metrics of the CA and DCA models indicate that the system performance of both models is almost identical regardless of varying traffic demand and penetration ratios. Therefore, DCA model can be a reasonable alternative to the fixed infrastructure based ATIS model (CA model).

교통체증은 도시지역에서 심각한 경제적, 사회적 비용을 초래하는 원인으로 간주되고 있다. ITS기법은 첨단 센싱, 컴퓨팅, 그리고 통신기술을 이용해 교통체증을 경감시킬 수 있는 훌륭한 수단이다. 본 연구는 차량과 주변 인프라 그리고 차량 간의 무선통신을 통한 중앙제어식 그리고 분산식 첨단통행자정보시스템의 프레임워크를 제안하고 전형적인 $6{\times}6$ 도시형 도로망에서 그 효과를 시뮬레이션 기법을 이용하여 분석하고자 한다. 본 논문의 연구결과로서는 교통류, 무선통신 라디오 레인지 그리고 통신차량의 보급률 등에 따라 제안된 첨단통행자정보시스템은 교통사고로 야기된 정체지역을 우회할 수 있는 최적의 노선을 제공함으로써 운전자의 통행시간을 줄여주는 효과를 보였다. 다양한 연구 환경에서도 중앙제어식 그리고 분산식 첨단통행자정보시스템은 거의 동일한 효과를 보였는바, 분산식 첨단통행자정보시스템은 고가의 건설비와 설치 운영비를 요구하는 중앙제어식 첨단통행자정보시스템을 대신할 수 있는 시스템으로 기대된다.

Keywords

References

  1. D. Schrank and T. Lomax, "The 2007 urban mobility report," Texas Transportation Institute (TTI), Sep. 2007.
  2. PTV, "VISSIM User Manual 5.1," Karlsruhe, Germany, Planning Transport Verkehr AG, Jul. 2009.
  3. PTV, "VISSIM COM Interface Manual 5.1," Karlsruhe, Germany, Planning Transport Verkehr AG, Jul. 2009.
  4. R. Tomkewitsch, "Dynamic route guidance and interactive transport management with ALISCOUT," IEEE Transportations on Vehicular Technology, vol.40, no.1, pp.45-50, Feb. 1991. https://doi.org/10.1109/25.69971
  5. D. Dhoutaut and I. G. Lassous, "Performance of a multi‐hops configuration with 802.11: from simulation to experimentation," 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC), pp. 900-904, Sep. 2004.
  6. R. Rardin, "Optimization in operations research," Prentice Hall, Jul. 1997.
  7. K. K. Srinivasan and P. P. Jovanis, "Determination of number of probe vehicles required for reliable travel time measurement in urban network," Transportation Research Record: Journal of Transportation Research Board, vol.1537, pp.15-22, Jan. 1996. https://doi.org/10.3141/1537-03
  8. H. Dia and S. Panwai, "Modelling drivers' compliance and route choice behaviour in response to travel information," Journal of Nonlinear Dynamics, vol.49, no.4, pp.493-509, Jan. 2007. https://doi.org/10.1007/s11071-006-9111-3
  9. H. Mahmassani and P. S. Chen, "Comparative assessment of origin‐based and en‐route realtime information under alternative user behavior roles," Transportation Research Record: Journal of the Transportation Research Board, vol. 1306, pp.69-81, Jan. 1991.
  10. P. S. Chen, and H. S. Mahmassani, "Reliability of real‐time information systems for route choice decisions in a congested traffic network: some simulation experiments," Conference on Vehicle Navigation and Information Systems, pp.849-856, Oct. 1991.