• Title/Summary/Keyword: Urban Monitoring

Search Result 915, Processing Time 0.025 seconds

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.

Comparison of Air Pollution Characteristics in the Center Lane-Bus Stop and the Surrounding Areas (중앙차선 버스 정류장과 주변지역의 대기오염 특성 비교)

  • Lee, Yong-Ki;Kim, Woong-Soo;Hong, Soon-Mo;Shin, Eun-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.378-386
    • /
    • 2014
  • The use of bus stop in the center lane has reduced the emissions of exhaust gas on the road due to the improvement of the traffic speed but has caused a health problem for the citizens who are waiting for the bus in the platform, and thus the air pollution control of bus stop in the center lane is emerging as a more important part. This study was conducted to investigate the air pollution degree for the center lane-bus stops in four regions using mobile air measuring vehicle, and to evaluate the characteristics of air pollution by comparing with the data measured at the urban air monitoring site close to the bus stops. In addition, the correlation analysis was performed to analyze the impact to neighboring region by vehicle exhaust gas. The regional mean concentration of nitrogen dioxide in the center lane-bus stops ranged from 0.025 to 0.043 ppm which shows from 2.5 times to 5.3 times higher than the values of urban air monitoring site selected as a control group. The regional mean concentration of ozone in the center lane-bus stops ranged from 0.023 to 0.034 ppm which shows from 3% to 28% lower than the values of urban air monitoring site selected as a control group. The concentrations of nitrogen dioxide and ozone for the sampling regions did not exceed one hour-air quality environmental standard (0.1 ppm). The mean concentration of particulate matter for four center lane-bus stops was $28{\mu}g/m^3$ which shows about 27% higher than the values of urban air monitoring site selected as a control group, and that of particulate matter did not exceed one day-air quality environmental standard ($100{\mu}g/m^3$). In the results of correlation analysis between data from center lane-bus stops and data from urban air monitoring sites, the correlation coefficient (r) of nitrogen dioxide was relatively low as 0.316 to 0.416, and the correlation coefficient was high as the distance was close and vice versa. However, the correlation coefficient of ozone ranged from 0.167 to 0.658 and the correlation coefficient was high as the distance was far and vice versa.

A Research on the Development of a GIS-Based Real-Time Water Monitoring Technique (GIS기반 실시간 용수 모니터링 기법 연구)

  • Kim, Seong-Hoon;Lee, Si-Hyoung;Kim, Dong-Moon;Kim, Eui-Myoung;Park, Jae-Kook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.111-118
    • /
    • 2010
  • The purposes of this study are to raise the awareness of urban water not being efficiently managed and to propose a method for resolving this issue. To serve these purposes, a methodology was proposed to obtain sensing data in a real-time monitoring method and to build them into a GIS. Some sample data among sensing data was used to perform a series of trend analyses using several polynomial models. As a result of the aforementioned research, the proposed monitoring technique is expected to offer some important information in order to improve the reliability of urban water.

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Condition Monitoring of the Power Facilities appling to the Wireless Communications in Urban Rail Transit (무선통신기술을 적용한 도시철도 전력설비의 상태모니터링)

  • Kim, Do-Yoon;Jung, Ho-Sung;Park, Young;Park, Hyun-June;Park, Young-Jae;Kim, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.406-410
    • /
    • 2009
  • Power facilities of urban rail transit substation is deterioration, and endurance limitation is coming, so urban rail transit facilities should take any necessary measure for maintenance and repair. In this paper proposes online monitoring system using the wireless communications for the urban rail transit. This system is constructed various departments; such as sensor, measurement, data communication, host computer, and power departments. It is designed to collect and save AI (Analog Input) information of the power facilities, and to analyze and display them. As a result, it is possible to prevent from any unexpected power cuts and monitor my abnormalities in real time, and to collect accumulated data for creating a better management system.

  • PDF

Software design technique of Train Control and Monitoring System (TCMS) using CASE tool (CASE tool을 이용한 전동차 제어감시장치 (TCMS)의 소프트웨어 설계기법)

  • Han, Seong-Ho;Ahn, Tae-Ki;Kim, Won-Kyong;Choi, Kyu-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.358-360
    • /
    • 1997
  • The train control and monitoring system(TCMS) is an on board computer system in railway vehicles performing the control, supervisory and diagnostic functions of the complete train. This system replaces a lot of hardwired relays and minimizes the necessaries vehicle wiring thus increasing the reliability of the train. In this paper, we proposed a software design technique of TCMS using CASE tool (SAO+). The TCMS functions are implemented in software easily programmed, using a functional block, graphic programming language. We applied the compressor air module to a case study.

  • PDF

Urban Facilities Monitoring Using Airship Videographic System

  • Yoo, Hwan-Hee;Kang, In-Joon;Kim, Seong-Sam;Park, Kyung-Yeol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.28-34
    • /
    • 2004
  • Fast urbanization and industrialization have resulted in rapid changes in the urban environment. For effective monitoring and management of these changes, a new surveying methodology that is more inexpensive and timely than the conventional remote sensing system is required. This paper proposes an unmanned airship videographic system capable of acquiring stable video. In addition, it presents approaches to constructing a prototype facilities management system based on VideoGIS, which links GIS functions and video data to provide actual spatio-temporal information.

  • PDF

The Characteristics Analysis for Monitoring and diagnosing Electrical Equipments of the Urban Railway (도시철도 전력설비 감시진단을 위한 특성 분석)

  • Lee, Ji-Chul;Lee, Dong-Zoon;Uh, Soo-Young;Ryu, Ki-Son;Im, Hyeong-Gil;Jung, Ho-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.230-234
    • /
    • 2008
  • Urban Railway was used importantly with transport for several decades. This transportation facilities used electricity. When the breakdown occurs, social, the economic loss is enormous. In addition to, the power equipment was ageing. We need preventive diagnostic monitoring system in order to prevent breakdown of power equipment. In this paper, we investigates characteristic and breakdown type of the Urban Railway power equipment. Through the this research, we can contribute in the operation which power equipment is efficient of the Urban Railway.

  • PDF

A case study of condition monitoring for mold transformers on urban railway transit (도시철도용 몰드변압기 상태감시를 위한 사례조사 연구)

  • Kim, Do-Yoon;Jung, Ho-Sung;Park, Young;Han, Seok-Youn;Lee, Sang-Bin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.235-240
    • /
    • 2008
  • Since urban railway transit is one of the most essential transportation systems, its power facilities must ensure high reliability and safety. Currently, urban railway operating organizations perform TBM (Time Based Maintenance) on power facilities. However, in order to improve management efficiency and system safety, CBM (Condition Based Maintenance) is preferred. Among various power facilities, mold transformers has been chosen as the object of study since it is widely used for the purpose of minimizing volume and weight, and due to safety against fire. In this paper, various transformer failure cases due to electric, thermal, mechanical and environmental factors have been collected and analyzed. In addition, investigation on national and international condition based maintenance cases and the characteristics of sensors widely used for transformer monitoring has been performed to suggest the optimal condition based maintenance technique for urban railway systems.

  • PDF

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.