• Title/Summary/Keyword: Urban Groundwater

Search Result 215, Processing Time 0.025 seconds

Contaminated Land: A Site Auditor's Perspective\ulcorner

  • Ross McFarland
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.63-66
    • /
    • 2002
  • Developers have, for some time now, recognised the benefits of acquiring "brownfields" sites for future urban development. The term “brownfield” generally refers to sites that have been previously occupied and in most cases this occupation has been for industrial usage. A key issue that developers face when considering the acquisition of a former industrial site is contamination and the costs associated with remediating the land to a level that renders the site suitable for its proposed use. Understanding all of the issues and implications associated with the remediation of contaminated land can be quite daunting. The process of remediation brings together a number of stakeholders that all have some influence on the outcome of the works. The stakeholders include the vendor, the purchaser, the regulatory authorities i.e. EPA and council, the Site Auditor and local residents. Careful planning and negotiation with the above stakeholders should be considered before committing to any remediation project.n project.

  • PDF

Effects of solution, sorbate, and sorbent chemistries on polycyclic aromatic hydrocarbon sorption to hydrated mineral surfaces

  • Yim, Soobin
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.132-135
    • /
    • 2003
  • Solution chemistry, sorbate chemistry, and sorbent chemistry were widely investigated to find important factors that affect PAH sorption on mineral surfaces and to elucidate its microscopic mechanism. The solution chemistry, pH and ionic strength caused measurable change of HOC sorption reaction to minerals. The detectable change of Ka occurred at a pH region crossing the PZC (Point of Zero Charge) of each mineral. The PAH hydrophobicity, one of sorbate chemistry, was observed to have a strong correlation with PAM sorption to mineral. Mineral surface area was not found to be a predominant factor controlling PAH sorption. The mineral type might be more likely to play a crucial role in controlling the PAH sorption behavior. The CEC (Cation Exchange Capacity) of mineral, representing surface charge density, has meaningful correlation with regression slope of sorption coefficients (log $K_{d}$) versus aqueous activity coefficients (log Υ$_{w}$).).).

  • PDF

Causes and suggestions on administrative measures of Subsidence (sink holes) in Urban areas (도심지역의 지반침하(싱크홀)의 원인과 관리적 대책에 대한 제언)

  • Kim, Chun-Soo;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • In recent years, urban areas occurred several times a sinkhole. In Korea, this limestone area where the sink hole sink holes occur based on not much was seen as a very rare phenomenon. However, the occurrence of accidents in recent Subsidence and urban areas is occurring in the limestone sinkhole may yet see another one called artificial Subsidence phenomenon. Subsidence in urban areas can have various causes, such as depression groundwater level changes due to the influence of soil, underground, etc. underground utilities by anthropogenic actions. But a lot of research on natural sinkhole by geological experts continued steadily since the past Subsidence that occurred in recent years the city has become an urgent problem to formulate a countermeasure to be very concerned about the human and material damage. In this study, the city by analyzing existing research on the causes and countermeasures of Subsidence recently released look at the announced sinkhole, published statistics and cases of Subsidence data, and overseas corresponding practices in each relevant agencies and to suggest measures for local Subsidence.

A Study on Geoelectrical Structure of Jeju Island Using 3D MT Inversion of 2D Profile Data (2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구)

  • Choi, Ji-Hyang;Kim, Hee-Joon;Nam, Myung-Jin;Lee, Tae-Jong;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Traditional two-dimensional (2D) interpretation of magnetotelluric (MT) data utilizes only transverse magnetic (TM)-mode data, because 2D inversion of transverse electric (TE)-mode data results in spurious features when 3D structures exist in the subsurface. The application of a 3D inversion algorithm to a single MT profile can reduce contamination due to off-profile anomalies and help us to incorporate TE-mode data in the interpretation. In this study, we conduct 2D and 3D inversions of MT data observed along two lines in Jeju Island. First, we invert apparent resistivities and phases in the TM and TE modes separately. Then, we perform 2D joint inversion of both TM- and TE-mode data and 3D inversion of both Zxy- and Zyx-mode data corresponding to TE- and TM-mode data in 2D. The resistivity images derived from all four data show that the geoelectrical structure in Jeju Island is a three-layered earth with the resistive-conductive-resistive stratigraphy within a depth of 5 km. The 3D inversion does not produce clear anomalies in the reconstructed profile image, while all of 2D do. This attributed to the possibility that 2D inversion results are distorted by exiting off-profile 3D anomalies in Jeju. With 3D inversion of 2D profile MT data, we can deduce more reliable results that are not seriously distorted by off-profile 3D anomalies.

Fully Coupled Seismic Analysis of Stress-Flow According to Tunnel Drainage Type (터널 배수 형식에 따른 응력-침투 연계 내진해석)

  • Byoung-Il Choi;Myung-Ho Ha;Dong-Ha Lee;Eun-Cheol Noh;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.94-103
    • /
    • 2023
  • Built in urban ares tunnels is necessary to accurately grasp not only the above-ground environment of the tunnel but also the below-ground environment of the tunnel for design and construct. However, fully coupled analysis of stress and flow is very difficult due to the limited function of the tunnel numerical analysis program and difficulty in using program. This can lead to excessive design that increases the construction cost or occur problems that can lead to accidents during construction. In particular, in the case of an urban tunnel has a low layer soil section above the tunnel and the groundwater level exists in the upper layer of the tunnel. Therefore, a reduction in the groundwater level during underground construction may increase the effective stress of the upper layer and cause the ground to subsidence. So It is necessary to design after accurately evaluating the change in the groundwater level. In this study, the tunnel's behavioral characteristics were analyzed through fully coupled analysis of stress and flow according to the drainage type for an urban underground tunnel.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Qualitative Analysis of Research Papers of KIGAM World Class Laboratories (WCL) Candidates (논문 질적평가를 통한 KIGAM 세계수준 후보연구실 기술수준 평가)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.227-235
    • /
    • 2014
  • For technology level assessment of KIGAM World Class Laboratories (WCL) candidates, bibliometric and qualitative analysis was conducted on their research papers listed on the SCIE database during 2009-2012. For the six research areas of geoscience and mineral resources, a research excellence indicator was applied using a Modified Rank Normalized Impact Factor (mrnIF), which was introduced by Heo et al. (2008) and Cho (2013). The KIGAM research department in rare metals utilization had the highest score for Impact Factor (IF) per paper in 2012 but the groundwater department or the exploration geophysics department came first based on the position and the mrnIF. Applying the mrnIF, the KIGAM research department in groundwater achieved excellent results in 2009 and 2011 and the urban mine department or exploration geophysics department came first place in other years. In the groundwater area, the percentage of research papers over 80 or 90 mrnIF, using Cho (2013)'s research excellence index, was the highest in 2011. The Cho (2013)'s excellent research indicator, 20%, the ratio of over 90 mrnIF was matched in the urban mining area for the whole research period, 2009-2012, and in the groundwater area for several years except 2010. Qualitative analysis of research papers can show the technology level of research departments. KIGAM World Class Laboratories (WCL) candidates should focus on increasing the quality and the quantity of their research papers.

An Experimental Study on Recharge Well Technology for Prevention of Ground Collapse (지반함몰 방지를 위한 지하수 재주입 실험적 연구)

  • Shin, Eunchul;Park, Chunsung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.35-43
    • /
    • 2017
  • It is a method of suppressing back ground subsidence by re-injecting groundwater back to the target ground and recovering the underground water level. In order to analyze the subsidence of the back ground due to maintaining the underground water level, indoor model experiments were conducted. Through this study, the factors influencing on the groundwater and the tendency of subsidence back ground by experiments were analyzed and the effect of ground subsidence by reinfusion of groundwater was also investigated. As a result of the subsidence analysis with considering only the influence of the underground water level, the settlement of the ground occurs as the underground water level at the time of ground excavation goes down. The closer to the back of the retaining wall, the maximum settlement occurred. Moreover, it was analyzed that the influence distance where subsidence occurs from retaining wall to the point of about 1.8 H on the basis of the ground collapse. The most effective location of water reinjection is the closet location to the back of braced-cut wall for reducing the groundwater down and also minimizing the ground settlement.

An Experimental Study on Groundwater Head, Injection Water Flowrate and Seepage Water Flowrate under Clogging State of Underground Storage (LPG 지하저장기지 수평 수벽공의 클로깅 현상 발생시 지하수위 및 주입수량, 삼출수량의 변화양상에 관한 실험적 연구)

  • Han Choong-Yong;Kang Joe M.
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 1997
  • When the water curtain system is employed to keep the liquefied gas in the underground storage cavern, clogging is observed in borehole. Since this phenomenon causes serious difficulties in managing LPG storage cavern, it needs to detect the degree of clogging accurately under various circumstances. Thus, in this study the active factors of clogging, that is, groundwater head, injection water flowrate, and seepage water flowrate, were investigated experimentally using a physical model. Experimental results show that groundwater head around storage cavern increases as cavern Pressure increases, while it decreases as clogging becomes severe. The pressure in storage cavern is required to reduce up to atmospheric pressure in order to detect and identify the degree of clogging more accurately. The decrease of uroundwater head due to clogging slows down as the pressure in borehole increases. As amounts of suspended matters in injected water increase, both injection water flowrate and seepage water flowrate decrease linearly with time, and the flowrate of injection water drops rapidly compared with seepage water flowrate.

  • PDF

Study on the discharge of soil particles and ground collapse through cracks in underground structures (지중구조물 균열을 통한 토립자 유출 및 지반함몰 특성 연구)

  • Kim, Ho-Jong;Kim, Kang-Hyun;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.699-715
    • /
    • 2019
  • Recently, in urban areas, cavities and ground collapse adjacent to underground structures are frequently reported. Several studies on the cavity generation by structure cracks have been made, however they are focused on the cause of cracks and settlement of the ground. In this paper, soil particle and groundwater discharge through pipe cracks and cavity generation mechanism are investigated. The theoretical analysis of the groundwater, which is the main factor of the drainage of the soil particles, and the particle transport mechanism and flow characteristics were investigated. An experimental model test was carried out to identify the mechanism of cavity generation by underground buried pipe cracks. The soil particle weight of discharge through the cracks, and the movement characteristics of the particles were analyzed using PIV. In this study, it is clearly identified that soil particle movements, cavity generation and ground collapse that occur in the ground are basically caused by the movement of groundwater.