• Title/Summary/Keyword: Uranium

Search Result 984, Processing Time 0.025 seconds

Study on Concentration Variation of 222Rn for Various Scintillators Using Low-Level Liquid Scintillation Counter (저 준위 액체섬광계수기를 이용한 섬광체 종류에 따른 222Rn 농도 변화 연구)

  • Jeon, JaeWan;Lee, Deuk-Hee;Kim, Jin-Seop
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.847-856
    • /
    • 2019
  • The various environmental issues arose with the development of today's economy. naturally, people were increased interest in environment and the importance of research on drinking water and contamination are emerging especially. A number of country areas, uranium and 222Rn in ground water have been detected to people using as drinking water. So this study evaluated the way for more accurate measurements than when measuring 222Rn concentrations in the ground water containing. the experiment was performed using the low-level liquid scintillation counter with an alpha, beta analysis easy PSA function of pulse. the scintillator as the preparation of the ground water samples are mixed, the measure value detection is lowered over prepare period and expiration date. Energy spectrum was also moved to a lower side channel. As a long time to buy the scintillator and over time after opening, it was confirmed that detection is lowered. if the purpose is to use a different scintillator can see the energy through the channel change.

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel (경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발)

  • Kim, Hyo Chan;Yang, Yong Sik;Koo, Yang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.

Estimation of Uranium Requirements Based on Future Reactor Strategies

  • Hahn, Do-Hee;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.22-35
    • /
    • 1981
  • The U$_3$O$_{8}$ requirements are estimated for the high, intermediate, and low growth projections of nuclear power in Korea. To each projection, four illustrative reactor-mix strategies and four fuel cycle options are applied for estimating the requirements. The reactor types considered are PWR, PHWR. and FBR. The fuel cycles considered are once-through cycle, U/Pu recycle, and improved once-through cycle. Also the amount of Pu-fissile recovered from U recycle is estimated. The maximum cumulative (to the year 2000) requirements of U$_3$O$_{8}$ occupy about 4 to 5 percent of the WOCA requirements and are about 23 times larger than the U$_3$O$_{8}$ resources in Korea. For the high nuclear power growth projection, the cumulative amount of Pu-fissile recovered from U recycle is sufficient for the startup of 2 units of 1200 MWe fast reactors by the year 2000. 2000.

  • PDF

COMPUTATIONAL INVESTIGATION OF 99Mo, 89Sr, AND 131I PRODUCTION RATES IN A SUBCRITICAL UO2(NO3)2 AQUEOUS SOLUTION REACTOR DRIVEN BY A 30-MEV PROTON ACCELERATOR

  • GHOLAMZADEH, Z.;FEGHHI, S.A.H.;MIRVAKILI, S.M.;JOZE-VAZIRI, A.;ALIZADEH, M.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.875-883
    • /
    • 2015
  • The use of subcritical aqueous homogenous reactors driven by accelerators presents an attractive alternative for producing $^{99}Mo$. In this method, the medical isotope production system itself is used to extract $^{99}Mo$ or other radioisotopes so that there is no need to irradiate common targets. In addition, it can operate at much lower power compared to a traditional reactor to produce the same amount of $^{99}Mo$ by irradiating targets. In this study, the neutronic performance and $^{99}Mo$, $^{89}Sr$, and $^{131}I$ production capacity of a subcritical aqueous homogenous reactor fueled with low-enriched uranyl nitrate was evaluated using the MCNPX code. A proton accelerator with a maximum 30-MeV accelerating power was used to run the subcritical core. The computational results indicate a good potential for the modeled system to produce the radioisotopes under completely safe conditions because of the high negative reactivity coefficients of the modeled core. The results show that application of an optimized beam window material can increase the fission power of the aqueous nitrate fuel up to 80%. This accelerator-based procedure using low enriched uranium nitrate fuel to produce radioisotopes presents a potentially competitive alternative in comparison with the reactor-based or other accelerator-based methods. This system produces ~1,500 Ci/wk (~325 6-day Ci) of $^{99}Mo$ at the end of a cycle.

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels

  • Lee, Jeongmook;Park, Jai Il;Youn, Young-Sang;Ha, Yeong-Keong;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.645-650
    • /
    • 2017
  • This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

Analysis of Radioactivity Concentrations in Cigarette Smoke and Tobacco Risk Assessment (담배연기와 담뱃잎 내 함유된 방사능 농도분석 및 위해도 평가)

  • Lee, Se-Ryeong;Lee, Sang-Bok;Kim, Jeong-Yoon;Kim, Ji-Min;Bang, Yei-jin;Lee, Doo-Seok;Jo, Hyung-Joon;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.489-494
    • /
    • 2021
  • In this study, radioactivity quantitative analysis was performed on radon contained in cigarette, and the effective dose was calculated using the result value to determine the amount of exposure caused by smoking. A total of 5 types of cigarettes were sampled. Cigarette smoke was collected by using activated carbon, and tobacco were measured by homogenizing for quantitative analysis. For each sample, Bi-214 and Pb-214 were subjected to gamma nuclide analysis to observe the uranium-based radioactive material contained in cigarette, and a measurement time of 30,000 seconds was set for the sample based on the results of previous studies. As a result of measuring the radioactivity of tobacco, a maximum of 0.715 Bq/kg was derived, and in the case of cigarette smoke measured using activated carbon, a maximum of 3.652 Bq/kg was derived. Using this measurement, the average effective dose to the lungs is 0.938 mSv/y, and it was found that there is a possibility of receiving exposure up to 1.099 mSv/y depending on the type of tobacco. It was found that the exposure dose due to cigarette occupies a large proportion of the annual effective dose limit for the general public. Therefore, more diverse studies on radioactive substances in cigarette are needed, and measures to monitor and reduce the incidental exposure to radon should be established.

Validation of spent nuclear fuel decay heat calculation by a two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Park, Jinsu;Choe, Jiwon;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.44-60
    • /
    • 2021
  • In this paper, we validate the decay heat calculation capability via a two-step method to analyze spent nuclear fuel (SNF) discharged from pressurized water reactors (PWRs). The calculation method is implemented with a lattice code STREAM and a nodal diffusion code RAST-K. One of the features of this method is the direct consideration of three-dimensional (3D) core simulation conditions with the advantage of a short simulation time. Other features include the prediction of the isotope inventory by Lagrange non-linear interpolation and the use of power history correction factors. The validation is performed with 58 decay heat measurements of 48 fuel assemblies (FAs) discharged from five PWRs operated in Sweden and the United States. These realistic benchmarks cover the discharge burnup range up to 51 GWd/MTU, 23.2 years of cooling time, and spanning an initial uranium enrichment range of 2.100-4.005 wt percent. The SNF analysis capability of STREAM is also employed in the code-to-code comparison. Compared to the measurements, the validation results of the FA calculation with RAST-K are within ±4%, and the pin-wise results are within ±4.3%. This paper successfully demonstrates that the developed decay heat calculation method can perform SNF back-end cycle analyses.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

The Status and Prospect of Decommissioning Technology Development at KAERI (한국원자력연구원의 해체기술 개발 현황 및 향후 전망)

  • Moon, Jeikwon;Kim, Seonbyung;Choi, Wangkyu;Choi, Byungseon;Chung, Dongyong;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.139-165
    • /
    • 2019
  • The current status and prospect of decommissioning technology development at KAERI are reviewed here. Specifically, this review focuses on four key technologies: decontamination, remote dismantling, decommissioning waste treatments, and site remediation. The decontamination technologies described are component decontamination and system decontamination. A cutting method and a remote handling method together with a decommissioning simulation are described as remote dismantling technologies. Although there are various types of radioactive waste generated by decommissioning activities, this review focuses on the major types of waste, such as metal waste, concrete waste, and soil waste together with certain special types, such as high-level and high-salt liquid waste, organic mixed waste, and uranium complex waste, which are known to be difficult to treat. Finally, in a site remediation technology review, a measurement and safety evaluation related to site reuse and a site remediation technique are described.

Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite (모나자이트 취급공정에서의 라돈 및 토론 노출 특성)

  • Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.