Browse > Article
http://dx.doi.org/10.3795/KSME-A.2014.38.2.157

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel  

Kim, Hyo Chan (LWR fuel technology division, Korea Atomic Energy Research Institute)
Yang, Yong Sik (LWR fuel technology division, Korea Atomic Energy Research Institute)
Koo, Yang Hyun (LWR fuel technology division, Korea Atomic Energy Research Institute)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.38, no.2, 2014 , pp. 157-166 More about this Journal
Abstract
A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.
Keywords
Light Water Reactor Fuel; Gap Conductance; Thermo-Mechanical Simulation; Finite Element Method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hansen, G., 2011, "A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems," Journal of Computational Physics, Vol. 230, pp. 6546-6562.   DOI   ScienceOn
2 Ainscough, J.B., 1982, Gap Conductance in Zircaloy-Clad LWR Fuel Rods, OECD-NEA, CSNI Report No. 72.
3 Soba, A. and Denis, A., 2008, "Simulation with DIONISIO 1.0 of Thermal and Mechanical Pellet-Cladding Interaction in Nuclear Fuel Rods," Journal of Nuclear Materials, Vol. 374, pp. 32-43.   DOI   ScienceOn
4 Kim, H.C., Yang, Y.S. and Koo, Y.H., 2013, "Development of FE-Based Gap Conductance Model Using Adaptive Link Element," Proceeding of KSME for CAE and Applied Mechanics, Pusan, Korea, pp. 303-304.
5 Kim, H.C., Yang, Y.S., Kim, D.H., Bang, J.G., Kim, S.K. and Koo, Y.H., 2012, "Study of Gap Conductance Model for Thermo-Mechanical Fully Coupled Finite Element Model," Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea.
6 ANSYS R&D Inc., "ANSYS Manuals," 2010.
7 Lamarsh, J.R. and Baratta, A.J., 2012, Introduction to Nuclear Engineering, Third edition, Prentice-Hall, Inc.
8 Kim, S.H., 2010, Incore Fuel Management, Hyungseul
9 Ross, A.M. and Stoute, R.L., 1962, Heat transfer coefficient between UO2 and Zircaloy-2, ACEL-1552.
10 Knuutila, A., 2006, Improvements on FRAPCON3/ FRAPTRAN Mechanical Modeling, VTT-R-11337-06, VTT.
11 Suzuki, M., 2000, Light Water Reactor Fuel Analaysis Code FEMAXI-V, JAERI-DATA/Code 2000-030.
12 Konings, J.M., 2012, Comprehensive Nuclear Materials, Elsevier, Waltham, pp. 682-691.