• 제목/요약/키워드: Upregulation

검색결과 712건 처리시간 0.026초

Upregulation of Heme Oxygenase-1 as an Adaptive Mechanism against Acrolein in RAW 264.7 Macrophages

  • Lee, Nam-Ju;Lee, Seung-Eun;Park, Cheung-Seog;Ahn, Hyun-Jong;Ahn, Kyu-Jeung;Park, Yong-Seek
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.230-236
    • /
    • 2009
  • Acrolein, a known toxin in cigarette smoke, is the most abundant electrophilic $\alpha$, $\beta$-unsaturated aldehyde to which humans are exposed in a variety of environmental pollutants, and is also product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status plays a major role in the pathogenesis of various diseases such as diabetes, Alzheimer's and atherosclerosis. The findings reported here show that low concentrations of acrolein induce heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. HO-1 induction by acrolein and signal pathways was measured using reverse transcription-polymerase chain reaction, Western blot and immunofluorescence staining analyses. Inhibition of extracellular signal-regulated kinase activity significantly attenuated the induction of HO-1 protein by acrolein, while suppression of Jun N-terminal kinase and p38 activity did not affect induction of HO-1 expression. Moreover, rottlerin, an inhibitor of protein kinase $\delta$, suppressed the upregulation of HO-1 protein production, possibly involving the interaction of NF-E2-related factor 2 (Nrf2), which has a key role as a HO-1 transcription factor. Acrolein elevated the nuclear translocation of Nrf2 in nuclear extraction. The results suggest that RAW 264.7 may protect against acrolein-mediated cellular damage via the upregulation of HO-1, which is an adaptive response to oxidative stress.

Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

  • Shyu, Rong-Yaun;Wang, Chun-Hua;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.877-887
    • /
    • 2016
  • Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.

Gastroprotective effects of the nonsaponin fraction of Korean Red Ginseng through cyclooxygenase-1 upregulation

  • Lee, Jeong-Oog;Kim, Ji Hye;Kim, Sunggyu;Kim, Mi-Yeon;Hong, Yo Han;Kim, Han Gyung;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.655-663
    • /
    • 2020
  • Background: Korean Red Ginseng is known to exhibit immune-enhancing and anti-inflammatory properties. The immune-enhancing effects of the nonsaponin fraction (NSF) of Korean Red Ginseng have been studied in many reports. However, the gastroprotective effect of this fraction is not fully understood. In this study, we demonstrate the activities of NSF for gastrointestinal protection and its related critical factor. Methods: The in vitro and in vivo regulatory functions of NSF on cyclooxygenase-1 (COX-1) messenger RNA and protein levels were examined by reverse transcription polymerase chain reaction and immunoblotting analyses. Gastroprotective effects of NSF were investigated by histological score, gastric juice pH, and myeloperoxidase activity on indomethacin-induced, cold stress-induced, and acetylsalicylic acid-induced gastritis and dextran sulfate sodium-induced colitis in in vivo mouse models. Results: NSF did not show cytotoxicity, and it increased COX-1 messenger RNA expression and protein levels in RAW264.7 cells. This upregulation was also observed in colitis and gastritis in vivo models. In addition, NSF treatment in mice ameliorated the symptoms of gastrointestinal inflammation, including histological score, colon length, gastric juice pH, gastric wall thickness, and myeloperoxidase activity. Conclusion: These results suggest that NSF has gastroprotective effects on gastritis and colitis in in vivo mouse models through COX-1 upregulation.

흰쥐 대뇌세포의 저산소증 모델에서 석창포(石菖浦 Acori graminei rhizoma. AGR)에 의한 유전자 표현 변화의 microarray 분석 (Microarray Analysis of Alteration in Gene Expression by Acori graminei rhizoma (AGR) Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells)

  • 박동준;정승현;문일수;이원철;신길조
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.150-161
    • /
    • 2007
  • Acori graminei Rhizomn (AGR) is a perennial herb which has been used clinically as a traditional oriental medicine against stroke, Alzheimer's disease, and vascular dementia. We investigated the effect of AGR on the modulation of gene expression profile in a hypoxic model of cultured rat cortical cells. Rat cerebrocortical cells were grown in Neurobasal medium. On DIV12, cells were treated with AGR $(10ug/m\ell)$, given a hypoxic shock (2% $O_2$, 3 hr) on DIV14, and total RNAs were prepared one day after shock. Microarray analyses indicated that the expression levels of most genes were altered within the global M values +0.5 and -0.5, i.e., 40% increase or decrease. There were 750 genes which were upregulated by < global M +0,2, while 700 genes were downregulated by > global M -0.2. The overall profile of gene expression suggests that AGR suppresses apoptosis (upregulation of anti-apopotic genes such as TEGT, TIEG, Dad, p53, and downregulation of pro-apopotic genes such as DAPK, caspase 2, pdcd8), ROS (upregulation of RARa, AhR), and that AGR has neurotrophic effects (upregulation of Aktl, Akt2). These results provide a platform for investigation of the molecular mechanism of the effect of AGR in neuroprotection.

Upregulation of TNF-α by Triglycerides is Mediated by MEK1 Activation in Jurkat T Cells

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • 대한의생명과학회지
    • /
    • 제24권3호
    • /
    • pp.213-220
    • /
    • 2018
  • Triglyceride (TG) is known to be associated with inflammatory disease including atherosclerosis. In a variety of atherosclerosis models, T lymphocytes are localized in the earliest lesions of atherosclerosis. T cell associated cytokines such as $TNF-{\alpha}$ and $IFN-{\gamma}$ have pre-dominant inflammatory effects in chronic vascular diseases. In our previous study, we found that the expression of $TNF-{\alpha}$ and its receptor, $TNF-{\alpha}R$ was increased when Jurkat T lymphocyte cell lines were exposed to TGs. Therefore, experiments were conducted to determine which cell signaling pathway are involved in the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs. To identify signal transduction pathways involved in TG-induced upregulation of $TNF-{\alpha}$, we treated TG-exposed Jurkat T cells with specific inhibitors for MEK1, PI3K, $NF-{\kappa}B$ and PKC. We found that inhibition of the MEK1 pathway blocked TG-induced upregulation of $TNF-{\alpha}$. However, the expression level of $TNF-{\alpha}R$ did not change with any signal transduction inhibitor. Based on this observation, we suggest that increase of exogenous TG induces increase of $TNF-{\alpha}$ expression through MEK1 pathway in Jurkat T cells. In addition, it was confirmed that the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs occurs via different pathways.

Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

  • Kim, Sokho;Oh, Myung-Hoon;Kim, Bum-Seok;Kim, Won-Il;Cho, Ho-Seong;Park, Byoung-Yong;Park, Chul;Shin, Gee-Wook;Kwon, Jungkee
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.365-370
    • /
    • 2015
  • Background: The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods: Raw 264.7 cells were pretreated with GRo (up to $200{\mu}M$) for 1 h before treatment with 1 mg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results: GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion: GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1.

Role of High-affinity Choline Transporter 1 in Colonic Hypermotility in a Rat Model of Irritable Bowel Syndrome

  • Lin, Meng-juan;Yu, Bao-ping
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.643-655
    • /
    • 2018
  • Background/Aims Irritable bowel syndrome (IBS) is a common disease characterized by intestinal dysmotility, the mechanism of which remains elusive. We aim to determine whether the high-affinity choline transporter 1 (CHT1), a determinant of cholinergic signaling capacity, modulates intestinal motility associated with stress-induced IBS. Methods A rat IBS model was established using chronic water avoidance stress (WAS). Colonic pathological alterations were evaluated histologically and intestinal motility was assessed by intestinal transit time and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response to colorectal distension. RT-PCR, western blotting, and immunostaining were performed to identify colonic CHT1 expression. Contractility of colonic muscle strips was measured using isometric transducers. enzyme-linked immunosorbent assay was used to measure acetylcholine (ACh). We examined the effects of MKC-231, a choline uptake enhancer, on colonic motility. Results After 10 days of WAS, intestinal transit time was decreased and fecal water content increased. Visceromotor response magnitude in WAS rats in response to colorectal distension was significantly enhanced. Protein and mRNA CHT1 levels in the colon were markedly elevated after WAS. The density of CHT1-positive intramuscular interstitial cells of Cajal and myenteric plexus neurons in WAS rats was higher than in controls. Ammonium pyrrolidine dithiocarbamate partly reversed CHT1 upregulation and alleviated colonic hypermotility in WAS rats. Pharmacological enhancement of CHT1 activity by MKC-231 enhanced colonic motility in control rats via upregulation of CHT1 and elevation of ACh production. Conclusion Upregulation of CHT1 in intramuscular interstitial cells of Cajal and myenteric plexus neurons is implicated in chronic stress-induced colonic hypermotility by modulation of ACh synthesis via nuclear factor-kappa B signaling.

Overexpression of KiSS1 Induces the Proliferation of Hepatocarcinoma and Increases Metastatic Potential by Increasing Migratory Ability and Angiogenic Capacity

  • Cho-Won, Kim;Hong, Kyu, Lee;Min-Woo, Nam;Youngdong, Choi;Kyung-Chul, Choi
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.935-949
    • /
    • 2022
  • Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of β-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)- related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

Cl--Channel Is Essential for LDL-induced Cell Proliferation via the Activation of Erk1/2 and PI3K/Akt and the Upregulation of Egr-1 in Human Aortic Smooth Muscle Cells

  • Heo, Kyung-Sun;Ryoo, Sung-Woo;Kim, Lila;Nam, Miyoung;Baek, Seung-Tae;Lee, Hyemi;Lee, Ah-Reum;Park, Song-Kyu;Park, Youngwoo;Myung, Chang-Seon;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.468-473
    • /
    • 2008
  • Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that $Cl^-$ channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of $Cl^-$ channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. $Cl^-$ channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated $Cl^-$ concentration, as judged by flow cytometry analysis using MQAE as a $Cl^-$-detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS ($Cl^-$ channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive $Cl^-$-channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1.