• 제목/요약/키워드: Upper-limb Rehabilitation

검색결과 217건 처리시간 0.022초

Effects of a Bilateral upper Limb Training Program Using a Visual Feedback Method on Individuals with Chronic Stroke: A Pilot Clinical Trial

  • Kang, Dongheon;Park, Jiyoung;Choi, Chisun;Eun, Seon-Deok
    • International Journal of Contents
    • /
    • 제17권2호
    • /
    • pp.20-31
    • /
    • 2021
  • This study aimed to pilot test a newly developed bilateral upper limb rehabilitation training program for improving the upper limb function of individuals with chronic stroke using a visual feedback method. The double-group pretest-posttest design pilot study included 10 individuals with chronic stroke (age >50 years). The intervention (four weekly meetings) consisted of five upper limb training protocols (wrist extension; forearm supination and pronation; elbow extension and shoulder flexion; weight-bearing shift; and shoulder, elbow, and wrist complex movements). Upper limb movement function recovery was assessed with the FuglMeyer Assessment of the Upper Extremity, the Wolf Motor Function Test, the Trunk Control Test, the modified Ashworth Scale, and the visual analog scale at baseline, immediately after, and four weeks after the intervention. The Fatigue Severity Scale was also employed. The Fugl-Meyer Assessment of the Upper Extremity and Wolf Motor Function Test showed significant improvement in upper limb motor function. The Trunk Control Test results increased slightly, and the modified Ashworth Scale decreased slightly, without statistical significance. The visual analog scale scores showed a significant decrease and the Fatigue Severity Scale scores were moderate or low. The bilateral upper limb training program using the visual feedback method could result in slight upper limb function improvements in individuals with chronic stroke.

상하지가 연동된 보행재활 로봇의 제어 및 VR 네비게이션 (Control and VR Navigation of a Gait Rehabilitation Robot with Upper and Lower Limbs Connections)

  • 본단 노반디;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.315-322
    • /
    • 2009
  • This paper explains a control and navigation algorithm of a 6-DOF gait rehabilitation robot, which can allow a patient to navigate in virtual reality (VR) by upper and lower limbs interactions. In gait rehabilitation robots, one of the important concerns is not only to follow the robot motions passively, but also to allow the patient to walk by his/her intention. Thus, this robot allows automatic walking velocity update by estimating interaction torques between the human and the upper limb device, and synchronizing the upper limb device to the lower limb device. In addition, the upper limb device acts as a user-friendly input device for navigating in virtual reality. By pushing the switches located at the right and left handles of the upper limb device, a patient is able to do turning motions during navigation in virtual reality. Through experimental results of a healthy subject, we showed that rehabilitation training can be more effectively combined to virtual environments with upper and lower limb connections. The suggested navigation scheme for gait rehabilitation robot will allow various and effective rehabilitation training modes.

뇌졸중 환자용 동력보조형 상지재활훈련기의 설계 (Design of Upper-limb Rehabilitation Device with Power-assist Function for Stroke Survivals)

  • 배주환;문인혁
    • 재활복지공학회논문지
    • /
    • 제5권1호
    • /
    • pp.79-85
    • /
    • 2011
  • 본 논문은 뇌졸중에 의한 상지 편마비 환자의 재활훈련을 위한 동력보조형 상지재활훈련기의 설계를 제안하였다. 설계된 상지재활훈련기는 3자유도를 가지고 있으며, 검지와 손목은 독립적으로, 그리고 나머지 손가락은 하나의 모듈로 굽힘과 폄 동작이 가능하다. 손목 기구는 복동식 공암실린더를, 손가락 기구에는 두 개의 전동식 선형구동기를 적용하여 동작을 보조하도록 하였다. 설계를 기반으로 프로토타입 상지재활훈련기를 제작하였으며, 0.8mm이내의 오차로 정상상태에 수렴하도록 위치제어기를 구현하였다. 실험의 결과로부터 동력보조용 상지훈련기가 실현가능함을 보였다.

Designing an Intelligent Rehabilitation Wheelchair Vehicle System Using Neural Network-based Torque Control Algorithm

  • Kim, Taeyeun;Bae, Sanghyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5878-5904
    • /
    • 2017
  • This paper proposes a novel intelligent wheelchair vehicle system that enables upper limb exercises, lower limb standing exercises and rehabilitation training in a daily life. The proposed system, which can be used to prevent at least the degeneration of body movements and further atrophy of musculoskeletal system functions, considers the characteristics and mobility of the old and the disabled. Its main purpose is to help the old and the disabled perform their daily activities as much as they can, minimizing the extent of secondary disabilities. In other words, the system will provide the old and the disabled with regular and quantitative rehabilitation exercises and diagnosis using the wheelchair-based upper/lower limb rehabilitation vehicle system and then verify their effectiveness. The system comprises an electric wheelchair, a biometric module to identify individual characteristics, and an upper/lower limb rehabilitation vehicle. In this paper the design and configuration of the developed vehicle is described, and its operation method is presented. Moreover, to verify the tracking performance of the proposed system, dangerous situations according to biosignal changes occurring during the rehabilitation exercise of a non-disabled examinee are analyzed and the performance of the upper/lower limb rehabilitation exercise function depending on muscle strength is evaluated through a neural network algorithm.

상하지 연동된 새로운 보행재활 로봇의 설계 (Design of a Novel Gait Rehabilitation Robot with Upper and Lower Limbs Connections)

  • 윤정원;본단노반디;크리스티앤드
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.672-678
    • /
    • 2008
  • This paper proposes a new rehabilitation robot with upper and lower limb connections for gait training. As humans change a walking speed, their nervous systems adapt muscle activation patterns to modify arm swing for the appropriate frequency. By analyzing this property, we can find a relation between arm swinging and lower limb motions. Thus, the lower limb motion can be controlled by the arm swing for walking speed adaptation according to a patent's intension. This paper deals with the design aspects of the suggested gait rehabilitation robot, including a trajectory planning and a control strategy. The suggested robot is mainly composed of upper limb and lower limb devices, a body support system. The lower limb device consists of a slider device and two 2-dof footpads to allow walking training at uneven and various terrains. The upper limb device consists of an arm swing handle and switches to use as a user input device for walking. The body support system will partially support a patient's weight to allow the upper limb motions. Finally, we showed simulation results for the designed trajectory and controller using a dynamic simulation tool.

동작관찰이 뇌졸중 환자의 환측 상지 기민성에 미치는 영향 : 단일사례연구 (The Effect of Action Observation Training on Affected Side Upper Limb Dexterity in Stroke Patient : Single-subject research design)

  • 양용필;김지현;한미란;김은비
    • 대한물리의학회지
    • /
    • 제7권1호
    • /
    • pp.111-118
    • /
    • 2012
  • Purpose : The purpose of present study was to determine effects of action observation training on upper limb function after stroke. Training was progressed to imitation and intensive training after observation to required action in ADL. Methods : Among the single case study was used to ABA design. pre base line(A) was only collected participant information without intervention in 5 times. action observation intervention(B) was carried out 10 times and 5 times to base lime(A) after intervention. Results : Results indicated that 10-second test, box and block test, manual function test was increased when compared action observation intervention(B) to pre base line(A). Conclusion : To stroke action observation training was evaluated gross manipulation, dexterity and upper limb function in related with ADL. action observation training benefits were maintained after intervention(B) and showed improvement on upper limb function of stroke.

Effects of sensory stimulation on upper limb strength, active joint range of motion and function in chronic stroke virtual reality training

  • Kim, Dong-Hoon;Lee, Suk-Min
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권3호
    • /
    • pp.171-177
    • /
    • 2020
  • Objective: This study aimed to investigate the upper limb strength, active joint range of motion (AROM), and upper limb function in persons with chronic stroke using virtual reality training in combination with upper limb sensory stimulation. Design: Two-group pretest-posttest design. Methods: 20 subjects were divided into two groups of 10, the sensory motor stimulation and virtual reality training (SMVR) and virtual reality training (VR) groups. The training was conducted for 30 minutes per session, three times a week for 8 weeks.The participants' upper limb strength was measured via the hand-held dynamometer, joint angle AROM was measured via dual inclinometer, function was measured using the Jebson-Taylor hand function test and the manual function test. Results: Significant differences were observed in all groups before and after the training for upper extremity strength, AROM, and function (p<0.05). Between the two groups, the SMVR group showed significant improvement in muscle strength, AROM, and Jebsen-Taylor hand function test scores compared with the VR groups (p<0.05). Conclusions: In this study, we confirmed that sensory stimulation and VR had positive effects on upper extremity strength, AROM, and function of persons with chronic stroke. The results suggest that in the future, VR in combination with sensory stimulation of the upper limb is likely to become an effective method (a rehabilitation training program) to improve the upper limb function of persons with chronic stroke.

어깨의 움직임을 중심으로 한 상지재활로봇 NREX의 착용감 개선 (Improved Wearability of the Upper Limb Rehabilitation Robot NREX with respect to Shoulder Motion)

  • 송준용;이성훈;송원경
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.318-325
    • /
    • 2019
  • NREX, an upper limb exoskeleton robot, was developed at the National Rehabilitation Center to assist in the upper limb movements of subjects with weak muscular strength and control ability of the upper limbs, such as those with hemiplegia. For the free movement of the shoulder of the existing NREX, three passive joints were added, which improved its wearability. For the flexion/extension movement and internal/external rotation movement of the shoulder of the robot, the ball lock pin is used to fix or rotate the passive joint. The force and torque between a human and a robot were measured and analyzed in a reaching movement for four targets using a six-axis force/torque sensor for 20 able-bodied subjects. The addition of two passive joints to allow the user to rotate the shoulder can confirm that the average force of the upper limb must be 31.6% less and the torque must be 48.9% less to perform the movement related to the axis of rotation.

밸런스 핸들 장치를 이용한 상지 운동 기능의 근전도 신호 분석 (EMG Signal Analysis of Upper Extremity Motor Function using Balance-handle Device)

  • 이충근;송기호;안재용;신성욱;정성택
    • 재활복지공학회논문지
    • /
    • 제10권4호
    • /
    • pp.295-303
    • /
    • 2016
  • 편마비 환자의 상지 운동 기능 재활 치료에 대한 지속적인 관심과 훈련의 정량적인 평가를 위한 다양한 장치가 요구되고 있다. 이러한 문제를 해결하기 위해서 본 논문에서는 거치대와 핸들, 밸런스 볼을 결합한 밸런스 핸들 장치를 개발하였다. 피험자 7명을 대상으로, 개발된 상지 훈련 장치를 기울일 때 주요 상지 근육에 대한 근전도 신호의 변화를 측정하여 재활 훈련 장치로 사용이 가능한지에 대한 유효성을 검토하였다. 밸런스 핸들 장치를 앞뒤로 기울였을 때의 상지 신전 굴곡 운동 동작과 좌우 기울임을 이용한 상지 운동 동작에서 근 수축과 이완이 기준이 되는 주동근과 길항근에서 근 활성화 신호를 분석하였다. 실험결과, Fugl-Meyer Assessment(FMA)의 신전 굴곡 운동 평가 항목에서 편마비 환자의 상지 운동 기능 평가에 이용되는 이두근, 삼두근, 삼각근에서 근 활성화 경향을 보였다. 이러한 결과를 바탕으로 개발된 장치를 활용하여 편마비 환자의 상지 재활 훈련에 도움이 될 수 있다고 볼 수 있다.

Comparison of EMG Activity during Horticulture Motion and Rehabilitation Motion of Upper Limb

  • Seong-Kwang Yoo;Seung-Hwa Jung;Jae-Soon Kim;Sun-Jin Jeong;Yong-Ku Kang;Yeo-Jin Jeong;Eun-Ha Yoo;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.400-408
    • /
    • 2022
  • Objective: The purpose of this study is to compare EMG activity during horticulture motion and upper limb rehabilitation motion, to confirm whether horticulture motion is suitable for upper extremity rehabilitation of hemiparesis. Design: Three-group cross-sectional design. Methods: The 45 subjects were divided into three groups: hemiparesis (n=15), elderly (n=15) and healthy (n=15). We have recorded EMG signals of six upper limb muscles Upper trapezius (UT), Middle deltoid (MD), Anterior deltoid (AD), Biceps brachii (BB), Triceps brachii (TB), Brachioradialis (BR) during horticultural motions and three upper limb rehabilitative motions. The dependent variables were peak EMG, integral EMG, co-contraction ratio. A two-way repeated measures ANOVA was used to compare the horticultural motion and rehabilitation motion of the three groups. Results: The peak EMG was significantly different in MD, AD, BB, TB according to the motion(p<0.05), and the UT, BB were significant differences according to the group(p<0.05). The integral EMG was significantly different in MD, AD, BB, TB, BR according to the motion(p<0.05), and the BB were significant differences according to the group(p<0.05). The co-contraction ratio was significantly different in TB/BB according of the motion, and there was no difference between the groups. Conclusions: As a result of this study, horticultural motion alone was insufficient for upper arm rehabilitation, and horticultural motion alone was insufficient to induce continuous activity of the forearm.