• Title/Summary/Keyword: Uplink power control

Search Result 58, Processing Time 0.032 seconds

A game theory approach for efficient power control and interference management in two-tier femtocell networks based on local gain

  • Al-Gumaei, Y. A.;Noordin, K. A.;Reza, A. W.;Dimyati, K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2530-2547
    • /
    • 2015
  • In the recent years, femtocell technology has received a considerable attention due to the ability to provide an efficient indoor wireless coverage as well as enhanced capacity. However, under the spectrum sharing between femtocell user equipment (FUEs) and the owner of spectrum macrocell user equipment (MUEs), both may experience higher uplink interference to each other. This paper proposes a novel distributed power control algorithm for the interference management in two-tier femtocell networks. Due to the assignment of licensed radio frequency to the outdoor macrocell users, the access priority of MUEs should be higher than FUEs. In addition, the quality of service (QoS) of MUEs that is expressed in the target signal-to-interference-plus-noise ratio (SINR) must always be achieved. On the other hand, we consider an efficient QoS provisioning cost function for the low-tier FUEs. The proposed algorithm requires only local information and converges even in cases where the frontiers of available power serve the target SINRs impossible. The advantage of the algorithm is the ability to implement in a distributed manner. Simulation results show that the proposed algorithm based on our cost function provides effective resource allocation and substantial power saving as compared to the traditional algorithms.

WCDMA Rreverse Link Beamforming Structure and its Performance Simulation (WCDMA 역방향 빔포밍 구조 및 성능 시뮬레이션)

  • 이재식;박영근;장태규;김재화
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.210-213
    • /
    • 2003
  • This paper presents a beamforming algorithm for the uplink application of a linear array antenna for WCDMA system. A steering beamforming algorithm is designed using a block DFT algorithm and its performance is analyzed and verified using computer simulations. Various environmental parameters such as the number of antenna elements, the number of users, the mobility of the target user, and the status of fast power control are reflected in the simulation study providing themselves as useful design and implementation guides for the reverse link beamforming of WCDMA system.

  • PDF

Optic Link Performances on EOM′s Biasing in Fiber-radio System (주파수 천이를 이용한 광무선 시스템에서 EOM의 바이어스 방식에 따른 광링크 성능 분석)

  • O, Se-Hyeok;Yang, Hun-Gi;Choe, Yeong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.128-136
    • /
    • 2001
  • This paper evaluates the performance of an optic link in a frequency conversion based fiber-radio system. The proposed link structure simplifies a BS(base station) via making the MMW(millimeter wave) optical pilot tone generated in the CS(control station) be used in the uplink as well as in the downlink. To acquire the optical pilot tone, an EOM(electro-optic modulator) in the CS is biased in three different ways, i.e., MAB(maximum bias), MIB(minimum bias), QB(quadrature bias). We, depending on the biasing of the EOM, evaluate the link performances in two cases; one is for constant laser source power and the other for constant received DC optical power at a PD(photo detector). Based on the simulation results on the downlink CNR and the uplink SFDR(spurious free dynamic range), we finally deduce the effective EOM biasing for each case.

  • PDF

Closed-Loop Power Control for Code Division Multiple Access in Time-Varying Underwater Acoustic Channel (시변 수중 음향 채널에서 코드 분할 다중 접속 방식의 폐루프 전력 제어 기법)

  • Seo, Bo-Min;Cho, Ho-Shin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.32-40
    • /
    • 2015
  • Code division multiple access (CDMA) is one of the promising medium access control scheme for underwater acoustic sensor networks due to its beneficial features such as robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design a closed-loop power control scheme for the underwater CDMA, to adapt time-varying acoustic channel. In the proposed scheme, sink node sends to sensor nodes the associated path loss which is acquired by uplink-channel analysis based on received packets from the sensor nodes. Then, sensor nodes adjust their transmission power in an adaptive manner to time-varying underwater acoustic channel, according to the informations sent by the sink node.

Effect Analysis of Timing Offsets for Asynchronous MC-CDMA Uplink Systems (비동기 MC-CDMA 상향 링크 시스템에서의 시간 옵셋 영향 분석)

  • Ko, Kyun-Byoung;Woo, Choong-Chae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.1-8
    • /
    • 2010
  • This paper models a symbol timing offset (STO) with respect to the guard period and the maximum access delay time for asynchronous multicarrier code division multiple access (MC-CDMA) uplink systems over frequency-selective multipath fading channels. Analytical derivation shows that STO causes desired signal power degradation and generates self-interferences. This effect of the STO on the average bit error rate (BER) and the effective signal-to-noise ratio (SNR) is evaluated. The approximated BER and the SNR loss caused by STO are then obtained as closed-form expressions. The tightness between the analytical result and the simulated one is verified for the different STOs and SNRs. Furthermore, the derived analytical results are verified via Monte Carlo simulations.

Capacity Analysis on Cellular CDMA System with Adaptive Array Antenna in the Presence of Angle Estimation Error (각도추정 오차가 있는 경우 적응배열 안테나를 사용한 셀룰러 CDMA 시스템의 용량분석)

  • 정영모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.900-909
    • /
    • 2000
  • Adaptive array antennas are one of the most promising techniques for improving the capacity of CDMA mobile communication system. In this paper, the uplink and downlink capacity for asynchronous W-CDMA system with adaptive array antenna is analyzed when an angle estimation error is present. From the results, it is found that the capacities are decreased by the angle estimation error. Specifically, when 5 degrees of error is present at 9 element adaptive array, the capacities are found to decrease by 5.2% in the uplink and 11.6% in the downlink. Also, in this paper, an attempt for comparing the capacities on different channel environments has been made. However, it is found that the increase of the Rice factor hardly effects the capacity due to the power control.

  • PDF

Large-Scale Joint Rate and Power Allocation Algorithm Combined with Admission Control in Cognitive Radio Networks

  • Shin, Woo-Jin;Park, Kyoung-Youp;Kim, Dong-In;Kwon, Jang-Woo
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • In this paper, we investigate a dynamic spectrum sharing problem for the centralized uplink cognitive radio networks using orthogonal frequency division multiple access. We formulate a large-scale joint rate and power allocation as an optimization problem under quality of service constraint for secondary users and interference constraint for primary users. We also suggest admission control to nd a feasible solution to the optimization problem. To implement the resource allocation on a large-scale, we introduce a notion of using the conservative factors $\alpha$ and $\beta$ depending on the outage and violation probabilities. Since estimating instantaneous channel gains is costly and requires high complexity, the proposed algorithm pursues a practical and implementation-friendly resource allocation. Simulation results demonstrate that the large-scale joint rate and power allocation incurs a slight loss in system throughput over the instantaneous one, but it achieves lower complexity with less sensitivity to variations in shadowing statistics.

A Study on Advanced Satellite Uplink Rain Attenuation Compensation using Digital Transponder of Next Military Satellite (차기 군위성체계의 디지털 위성중계기를 이용한 상향링크 강우감쇠에 대한 향상된 보상방안 연구)

  • Kim, Jung-Ho;Lee, Sue-Hyun;Kim, Bong-Su;Lee, Chang-Young;Song, Young-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1696-1703
    • /
    • 2010
  • Increased demand for military satellite communications system and due to the depletion of resources of existing satellite communications frequencies, Ka-band and EHF-band satellite communication systems is growing demand for development. As a result, the study of rain attenuation mitigation for Ka/EHF-band frequencies has been achieved. The method to compensate rain attenuation on Ka-band(20/30) using the signal power measurement function in Digital Transponder of Next Military Satellite has been proposed in this paper. This method is more effective than generally used method by Beacon and UPC(uplink power control) in giving the precise rain attenuation measurement and correction.

Energy-Efficient Power Control for Underlaying D2D Communication with Channel Uncertainty: User-Centric Versus Network-Centric

  • Ding, Jianfeng;Jiang, Lingge;He, Chen
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.589-599
    • /
    • 2016
  • Most existing resource management problem models arise from the original desire of allocating resources in either a user-centric or network-centric manner. The difference between their objectives is obvious: user-centric methods attempt to optimize the utility of individual users, whereas network-centric models intend to optimize the collective utilities of the entire network. In this paper, from the above two aspects, we analyze the robust power control problem in device-to-device (D2D) communication underlaying cellular networks, where two types of channel uncertainty set (e.g., ellipsoidal and column-wise) are considered. In the user-centric method, we formulate the problem into the form of a Stackelberg game, where the energy efficiency (EE) of each user is the ingredient of utility function. In order to protect the cellular user equipment's (CUE) uplink transmission, we introduce a price based cost function into the objectives of D2D user equipment (DUE). The existence and uniqueness of the game with the influence of channel uncertainty and price are discussed. In the network-centric method, we aim to maximize the collective EE of CUEs and DUEs. We show that by the appropriate mathematical transformation, the network-centric D2D power control problem has the identical local solution to that of a special case of the user-centric problem, where price plays a key role. Numerical results show the performance of the robust power control algorithms in the user-centric and network-centric models.

Two-Tier Interference Elimination for Femtocells Based on Cognitive Radio Centralized Spectrum Management

  • Yi, Leng-Gan;Lu, Yi-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1514-1531
    • /
    • 2014
  • Femtocell provides better coverage and higher spectrum efficiency in areas rarely covered by macrocells. However, serious two-tier interference emerging from randomly deploying femtocells may create dead zones where the service is unavailable for macro-users. In this paper, we present adopting cognitive radio spectrum overlay to avoid intra-tier interference and incorporating spectrum underlay and overlay to coordinate cross-tier interference. It is a novel centralized control strategy appropriate for both uplink and downlink transmission. We introduce the application of proper spectrum sharing strategy plus optimal power allocation to address the issue of OFDM-based femtocells interference-limited downlink transmission, along with, a low-complexity suboptimal solution proposed. Simulation results illustrate the proposed optimal scheme achieves the highest transmission rate on successfully avoiding two-tier interference, and outperforms the traditional spectrum underlay or spectrum overlay, via maximizing the opportunity to transmit. Moreover, the strength of our proposed schemes is further demonstrated by comparison with previous classic power allocation methods, in terms of transmission rate, computational complexity and signal peak-to-average power ratio.