• Title/Summary/Keyword: Uplink Station

Search Result 141, Processing Time 0.033 seconds

Power Saving Scheme by Distinguishing Traffic Patterns for Event-Driven IoT Applications

  • Luan, Shenji;Bao, Jianrong;Liu, Chao;Li, Jie;Zhu, Deqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1123-1140
    • /
    • 2019
  • Many Internet of Things (IoT) applications involving bursty traffic have emerged recently with event detection. A power management scheme qualified for uplink bursty traffic (PM-UBT) is proposed by distinguishing between bursty and general uplink traffic patterns in the IEEE 802.11 standard to balance energy consumption and uplink latency, especially for stations with limited power and constrained buffer size. The proposed PM-UBT allows a station to transmit an uplink bursty frame immediately regardless of the state. Only when the sleep timer expires can the station send uplink general traffic and receive all downlink frames from the access point. The optimization problem (OP) for PM-UBT is power consumption minimization under a constrained buffer size at the station. This OP can be solved effectively by the bisection method, which demonstrates a performance similar to that of exhaustive search but with less computational complexity. Simulation results show that when the frame arrival rate in a station is between 5 and 100 frame/second, PM-UBT can save approximately 5 mW to 30 mW of power compared with an existing power management scheme. Therefore, the proposed power management strategy can be used efficiently for delay-intolerant uplink traffic in event-driven IoT applications, such as health status monitoring and environmental surveillance.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

TCP Uplink Station-Level Fairness Support in IEEE 802.11 Networks (IEEE 802.11 네트워크에서 TCP 업링크 스테이션 간 공평성 지원)

  • Jun, Kyoog-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.553-558
    • /
    • 2009
  • There have been various research efforts to support the fairness between uplink and downlink of TCP streams in IEEE 802.11 networks. Existing methods, which have been effective for the fairness, however could not provide the solution for the unfairness caused by the situation in which a station which is having multiple TCP uplink streams monopolizes the uplink bandwidth. This paper proposes a method that AP allocates token buckets for each uplink TCP station. The proposed method is also able to support the fairness between the uplink and downlink. To remedy the underutilization which may happen under token bucket-based schemes, it allows the movement of redundant tokens among the token buckets. By controlling the token movements, it can balance the fairness and the utilization. Simulation results show that the proposed method is able to support the fairness of the TCP uplink stations, as well as the fairness between the uplink and downlink.

Performance Analysis of Mobile Multi-hop Relay Uplink System in Multicell Environments (멀티셀 환경에서 Mobile Multi-hop Relay 상향링크 시스템의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.394-400
    • /
    • 2010
  • Mobile Multi-hop Relaying (MMR) system can provide increased system capacity of wireless access network by coverage extension and enhanced transmission rate within the Base Station (BS) coverage area. The previous researches for the MMR system with a non-transparent mode Relay Station (RS) do not consider channel selection procedure of Mobile Station (MS), co-channel interference and Multi-hop Relay Base Station (MR-BS) coverage and RS coverage ratio in MMR system. In this paper, we investigate the performance of MMR uplink system in multicell environments with various topologies. The performance is presented in terms of call blocking probability, channel utilization, outage probability and system throughput by varying offered load. It is found that, for certain system parameters, the MMR uplink system achieve the maximum system throughput when MR-BS coverage to RS coverage ratio is 7.

W-CDMA Uplink Capacity and Interference Statistics of a Long Tunnel Cigar-Shaped Microcells

  • Taha-Ahmed, Bazil;Calvo-Ramon, Miguel;Haro-Ariet, Leandro De
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 2004
  • The uplink capacity and the interference statistics of the sectors of the cigar-shaped W-CDMA microcells are studied. A model of 9 base station, assumed to be in a long tunnel, is used for the uplink analysis. The capacity and the interference statistics of the microcells are studied for different sector ranges, different propagation exponents, different antenna sidelobe levels, and different bend losses.

Uplink Sub-channel Allocation and Power Control Algorithm Using Ranging Information in High speed Portable Internet System (휴대인터넷 시스템의 레인징 정보를 이용한 상향링크 부채널 할당 및 전력제어 알고리즘)

  • Kim, Dae-Ho;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.729-736
    • /
    • 2005
  • In this paper, we introduce a new approach for the design of uplink sub-channel allocation and power control in the High-speed Portable Internet system that is based on OmMAnDD scheme. In OFDMA system, because the number of allocated sub-channel in mobile station varies from one to the whole sub-channel as in base station while mobile station's transmit power is lower than that of base station, full loading range(FLR) constraint occurs where whole sub-channel can be used and the conventional open-loop power control scheme can not be used beyond FLR. We propose a new scheme that limits the maximum sub-channel allocation number and uses power concentration gain(PCG) depending on location of mobile station, which is based on ranging in OfDMA system. Simulation results show that the proposed scheme extends the uplink coverage to the entire cell service coverage area, provides solutions for optimum utilization of radio resource and enables open-loop power control beyond FLR without extra hardware complexity.

Playback Downlink and Telecommand Uplink Channel Design for Transportable KOMPSAT Ground Station (이동형 다목적실용위성 소형 관제국의 Playback 하향 링크 및 원격 명령 상향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.396-405
    • /
    • 2009
  • This paper describes playback downlink and telecommand uplink channel design performed for a transportable small-sized KOMPSAT(Korea Multi-Purpose Satellite) ground station. As a result of downlink channel design, required receiving performance was calculated from the threshold signal-to-noise ratio of playback signal and it was revealed that this performance can be guaranteed in 1.5 m ground station with 6.5 dB/K of G/T. For the uplink channel design, 40 dBW of EIRP was derived from the threshold signal-to-noise ratio of telecommand signal received at on-board receiver. The implemented small-sized ground station based on design was evaluated to be fully acceptable for KOMPSAT TT&C(Telemetry, Tracking and Command) system and playback downlink design without taking account of additional 3 dB system link margin was shown to be effective because it had provided constantly initial channel performance without any remarkable degradation over several years of tests with KOMPSAT and KOMPSAT-2, for both uplink and playback downlink in the elevation angle above $10^{\circ}$.

Pilot Symbol Assisted Weighted Data Fusion Scheme for Uplink Base-Station Cooperation System

  • Zhang, Zhe;Yang, Jing;Zhang, Jiankang;Mu, Xiaomin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.528-544
    • /
    • 2015
  • Base Station Cooperation (BSC) has been a promising technique for combating the Inter-Cell Interference (ICI) by exchanging information through a high-speed optical fiber back-haul to increase the diversity gain. In this paper, we propose a novel pilot symbol assisted data fusion scheme for distributed Uplink BSC (UBSC) based on Differential Evolution (DE) algorithm. Furthermore, the proposed scheme exploits the pre-defined pilot symbols as the sample of transmitted symbols to constitute a sub-optimal Weight Calculation (WC) model. To circumvent the non-linear programming problem of the proposed sub-optimal model, DE algorithm is employed for searching the proper fusion weights. Compared with the existing equal weights based soft combining scheme, the proposed scheme can adaptively adjust the fusion weights according to the accuracy of cooperative information, which remains the relatively low computational complexity and back-haul traffic. Performance analysis and simulation results show that, the proposed scheme can significantly improve the system performance with the pilot settings of the existing standards.

Uplink Interference Avoidance Scheme to Improve Femtocell Performance in Heterogeneous Cellular Networks (이기종 셀룰러 네트워크에서 펨토셀 성능향상을 위한 상향링크 간섭 회피 기법)

  • Kwon, Jung Hyoung;Sang, Young Jin;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.451-458
    • /
    • 2013
  • This paper proposes a cross-tier interference avoidance scheme to improve femtocell performance in single frequency heterogeneous cellular networks (SFHCN). The scheduled macrocell users located close femtocell base stations cause serious interference to those femtocells so that the performance of femtocell is dramatically deteriorated. To solve this problem, this paper proposes an interference avoidance scheme by reversing the uplink and downlink frames of such femtocells. After reversing the uplink and downlink frames, femtocell base station relays the macrocell user data as well as transmitting its own data. In the 1st relaying link, femtocell and macrocell users transmit their data respectively divided uplink frames and in the 2nd relaying link, femtocell base station transmit macrocell and femtocell data using a simultaneously superposition coding scheme. Computer simulation results confirm performance improvement of proposed scheme.