• Title/Summary/Keyword: Unsteady transient analysis

Search Result 90, Processing Time 0.021 seconds

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

Two-dimensional unsteady flow analysis with a five region turbulence models for a simple pipeline system (단순한 관망체계에서 5영역 난류 모형을 이용한 2차원 부정류 흐름 해석 연구)

  • Kim, Hyun Jun;Kim, Sangh Hyun;Baek, Da Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.971-976
    • /
    • 2018
  • An accurate analysis of pipeline transient is important for proper management and operation of a water distribution systems. The computational accuracy and its cost are two distinct components for unsteady flow analysis model, which can be strength and weakness of three-dimensional model and one-dimensional model, respectively. In this study, we used two-dimensional unsteady flow model with Five-Region Turbulence model (FRTM) with the implementation of interaction between liquid and air Since FRTM has an empirical component to be determined, we explored the response feature of two-dimensional flow model. The relationship between friction behaviour and the variation of undetermined parameter was configured through the comparison between numerical simulations and experimental results.

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

Numerical Analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연발화 및 화염전파 특성 해석)

  • Kim, Seong-Ku;Yu, Yong-Wook;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.24-32
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian Particle Flamelet Model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

  • PDF

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

Saturated - Unsaturated Transient Subsurface Flow Model on a Hillslope

  • Choi, Eun-Ho;Nahm, Sun-Woo
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.13-24
    • /
    • 1991
  • The governing partial differential equation of flow in porous media is developed on the bases of the continuity equation of fluid for transient flow through a saturated-unsaturated zone, and substitution of Dercy's law. The numerical solution is obtained by the Galerkin finite element method based on the principle of weighted residuals. The analysis is carried out by using the unsteady storm data observed and the functional relationships between the hydraulic conductivities, capillary pressure heads, and volumetric water contents under saturated-unsaturated conditions. As the results the hydraulic conductivities, rates of change of storage and initial moisture conditions are significantly influened on the responses of subsurface flow on a hillslope.

  • PDF

Analysis of Dynamic Behavior of a Heat Recovery Steam Generator and Steam Turbine System (열회수 증기발생기와 증기터빈 시스템의 동적 거동 해석)

  • Park, Hyung-Joon;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.994-1001
    • /
    • 2000
  • The dynamic behavior of a single-pressure heat recovery steam generator and turbine system for the combined cycle power plant is simulated on the basis of one-dimensional unsteady governing equations. A water level control and a turbine power control are also included in the calculation routine. Transient response of the system to the variation of gas turbine exit condition is simulated and effect of the turbine power control on the system response is examined. In addition, the effect of the treatment of inertia terms(fluid inertia and thermal inertia of heat exchanger metal) on the simulated transient response is investigated.

Analysis of Density Distribution for Unsteady Butane Flow Using Three-Dimensional Digital Speckle Tomography

  • Ko, Han-Seo;Park, Kwang-Hee;Kim, Yong-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1213-1221
    • /
    • 2004
  • Transient and asymmetric density distributions have been investigated by three-dimensional digital speckle tomography. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and transient. The speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields have been reconstructed from the deflection angles by a real-time multiplicative algebraic reconstruction technique (MART).

Dynamic Stability and Response Analysis of Piping System with Internal Flow (내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석)

  • 이우식;박철희;홍성철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1861-1871
    • /
    • 1991
  • In this study, the piping system conveying unsteady flow is considered. The effects of coupling between the pipe motion and the velocity and pressure of fluid are included for the dynamic stability and response analysis of the piping system. The dynamic equations for a piping system are derived by Newtonian dynamics. For the momentum and continuity equations, the concept of moving control volume is applied. Thus, the governing equations derived herein are valid for the applications to the vibration problems occurred when a piping system starts up or shuts down and also when the valves and pumps operate. For a simply supported straight pipe, the stability analysis is conducted for various nondimensional parameters. The dynamic responses, in both stable and unstable region of stability chart, are numerically tested by the use of central difference method.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.