• Title/Summary/Keyword: Unsteady heat conduction

Search Result 45, Processing Time 0.025 seconds

A Study on the Visualization of Ice-formation Phenomena of Bath Water to Decide Maintenance Period of Gas Heater (가스히터 보수주기 결정을 위한 히터내부 열전달 매체액 결빙현상 가시화에 관한 연구)

  • Lee J. H.;Ha J. M.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out for the purpose of determination of maintenance period and investigation of weak point due to freeze when the gas heater of KOGAS valve station Is not operated in winter season. 3-dimensional non-linear numerical simulation was conducted in order to predict the time and location which bath water in heater reaches to ice point. FLUENT V 5.0, commercial code, is used for thermal fluid flow analysis. We thought this was problem of heat conduction solving the energy equation and modeled gas heater by using the real geometry and scale for performing the 3-dimensional simulation. It was analyzed complex heat transfer phenomena considering convection due to air on surface, conduction in insulation material, natural convection of liquid in heater and heat loss through the pipe.

  • PDF

Numerical Analysis of Unsteady Heat Transfer for Location Selection of CPVC Piping (CPVC 배관 동파방지용 열선의 위치 선정을 위한 비정상 열전달 수치해석)

  • Choi, Myoung-Young;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.33-39
    • /
    • 2015
  • In this paper, a numerical experiment was conducted to find out the optimal location of electrical heat trace for anti-freeze of water inside the CPVC pipe for fire protection. The unsteady incompressible Navier-Stokes equations coupled with energy equation were solved. Since the conduction equation of pipe was coupled with the natural convection of water, the analysis of conjugate heat transfer was conducted. A commercial code (ANSYS-FLUENT) based on SIMPLE-type algorithm was used for investigating the unsteady flows and temperature distributions in water region. From the present numerical experiment, it has been found that the vector field of water inside the PVC pipe is opposite to the case of steel because of the huge difference of material properties of the two pipes. Furthermore, it was found that the lowest part of the pipe was an optimal position for electrical heat trace since the minimum water temperature of the case was higher than those of the other cases.

A Study on the Temperature Analysis of Casting Mould by Boundary Element Method (경계요소법을 이용한 주철제 주형의 온도해석에 관한 연구)

  • 민수홍;조의일;김옥삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.485-496
    • /
    • 1992
  • 본 연구에서는 제철, 제강공정에서 많이 사용하고 있는 C22FR1.4형의 주형을 상사적으로 축소시킨 주철제(GC25) 주형에 순알루미늄(순도99%)의 주물을 용입하여 응고 및 냉각 과정의 주물 및 주철제 주형에 미치는 열의 영향에 관하여 2차원 비정상 열전도 문제를 경계요소법으로 해석하고 실험을 통하여 검증하였다.

Comparison of the Effects of Straight and Twisted Heat Trace Installations Based on Three-dimensional Unsteady Heat Transfer (열선의 직선시공과 감기시공의 동파방지 효과 비교를 위한 3차원 비정상 수치해석)

  • Choi, Myoung-Young;Jeon, Byoung-Jin;Choi, Hyoung-Gwon
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • This paper numerically examines, straight and twisted electrical heat trace installations for their anti-freezing effects on water inside a pipe. The unsteady incompressible Navier-Stokes equations coupled with an energy equation were solved to compare the two installation methods. The heat conduction of the pipe with a heat source interacts with the natural convection of the water, and the conjugate heat transfer was considered using a commercial code (ANSYS-FLUENT) based on a SIMPLE-type algorithm. Numerical experiments, were done to investigate the isotherms and the vector fields in the water region to extract the evolutions of the minimum and maximum temperatures of the water inside the pipe. There was no substantial difference in the anti-freezing effects between the straight and twisted. Therefore, the straight installation is recommended after considering the damage and short circuit behavior of the electrical heat trace.

Temperature Analysis for Carbon Steel at Quenching Process by F. E. M.(Finite Element Method) (탄소강의 퀜칭과정에서 유한요소법을 이용한 온도해석)

  • Kim, Ok Sam;Cho, Eui Il;Shin, Young Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.103-110
    • /
    • 1994
  • It is well-known that the analysis of temperature distribution is substantilly important in optimal design of quenching process. The unsteady state temperature gradients generated during the quenching process were numerically calculated by the Finite Element Method(F. E. M.). Formulations of F. E. M. based weighted residural method were presented for the analysis of the two dimensional heat conduction problem. In the process of calculation, the temperature dependency of physical properties of the material was in consideration. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the carbon steel(SM45C).

  • PDF

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

MATHEMATICAL MODELLING AND ITS SIMULATION OF A QUASI-STATIC THERMOELASTIC PROBLEM IN A SEMI-INFINITE HOLLOW CIRCULAR DISK DUE TO INTERNAL HEAT GENERATION

  • Gaikwad, Kishor R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2015
  • The present paper deals with the determination of temperature, displacement and thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within it. Initially the disk is kept at arbitrary temperature F(r, z). For times t > 0 heat is generated within the circular disk at a rate of g(r, z, t) $Btu/hr.ft^3$. The heat flux is applied on the inner circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept at temperature $Q_3(r,t)$ and the upper surface ($Z={\infty}$) is kept at zero temperature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction equation has been solved by using finite Hankel transform and the generalized finite Fourier transform. As a special case mathematical model is constructed for different metallic disk have been considered. The results are obtained in series form in terms of Bessel's functions. These have been computed numerically and illustrated graphically.

Simulation of Line Heating Process by Finite Element Analysis (유한요소해석에 의한 선상가열 변형의 시뮬레이션)

  • I.S. Nho;J.G. Shin;K.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-83
    • /
    • 1995
  • As a basic research for the automation of plate forming process, the theoretical aspect of plate bending by line heating was surveyed and numerical simulation of plate bonding deformation was performed using the 3-dimensional nonlinear transient thermal elasto-plastic finite element analysis. Analyzing the unsteady heat conduction problem of the flat steel plate under heat flux input by gas torch, the time history of 3-dimensional thermal distribution was obtained. Transient thermal deformation process of the plate was analyzed under the thermal loading. And the calculated results are investigated in detail.

  • PDF

CFD Simulations of the Ground Surface Temperature and Air Temperature, Air flow Coupled with Solar Radiation (태양복사열에 따른 지표면 온도와 열, 기류 환경 시뮬레이션 연구)

  • Lee, JuHee;Kim, JaeGwon;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • The thermal environment in a small city rapidly deteriorates due to the urbanization and overpopulation. It is important to understand and predict the thermal environment in a city area. The thermal environment is highly affected by the solar radiation and temperature distributions changing over time periodically. To predict the thermal environment precisely, the solar radiation calculation including radiation strength, incidence angle, and thermal radiation between building surface and ground should be considered. In this study, the computational domain includes various artificial structures such as building, ground, asphalt, brick and grass. To consider the solar radiation, the unsteady state numerical calculation is performed from sun rise to mid-day (2:00pm). The numerical methods consist of solar load and one dimensional heat conduction through the boundaries to reduce the computational load and improve the flexibility of the calculation.

Analysis of the Stedy and Unsteady Heat Conduction in the Cylinder Block Attached with Rectangular Fin (직사각형 휜이 부착된 실린더 블럭의 정상 및 비정상 열전도 해석)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1254-1263
    • /
    • 1990
  • The temperature distribution and heat flux of the inner cylinder wall of a 4-cycle turbocharged gasoline engine were calculated by a 2-dimensional coordinate transformation. Boundary conditions of the inner wall of the cylinder were taken from the results of diagnostic engine simulations. Results show that the ununiformity of inner wall temperature of the cylinder black can be reduced by a proper choice of the thickness of fin and the distance between two cylinder blocks.