• 제목/요약/키워드: Unsteady aerodynamics

검색결과 111건 처리시간 0.025초

A dragonfly inspired flapping wing actuated by electro active polymers

  • Mukherjee, Sujoy;Ganguli, Ranjan
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.867-887
    • /
    • 2010
  • An energy-based variational approach is used for structural dynamic modeling of the IPMC (Ionic Polymer Metal Composites) flapping wing. Dynamic characteristics of the wing are analyzed using numerical simulations. Starting with the initial design, critical parameters which have influence on the performance of the wing are identified through parametric studies. An optimization study is performed to obtain improved flapping actuation of the IPMC wing. It is shown that the optimization algorithm leads to a flapping wing with dimensions similar to the dragonfly Aeshna Multicolor wing. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the IPMC wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Flutter Analysis of Annular Cascades in Counter Rotation

  • Nishino, R.;Namba, M.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.813-824
    • /
    • 2004
  • The paper studies the effect of neighboring blade rows on flutter characteristics of cascading blades. For this purpose the computation program to calculate the unsteady blade loading based on the un-steady lifting surface theory for contra-rotating annular cascades was formulated and coded. Then a computation program to solve the coupled bending-torsion flutter equation for the contra-rotating annular cascades was also developed. Some results of the flutter analysis are presented. The presence of the neighboring blade row gives rise to significant change in the critical flutter condition when the main acoustic duct mode is of cut-on state.

  • PDF

램제트 엔진의 비정상 천이 유동에 관한 연구 (Unsteady Transient Flowfield in an Integrated Rocket Ramjet Engine)

  • H.K. Sung;Vigor Yang
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.74-92
    • /
    • 2000
  • A numerical analysis has been conducted to study the transient flowfield during the transition from the booster to sustainer phase in an integrated rocket ramjet (IRR) propulsion system. Emphasis is placed on the unsteady inlet aerodynamics, fuel/air mixing in an entire ramjet engine during the flow transient phase. The computational geometry consists of the entire IRR engine, including the inlet, the combustion chamber, and the exhaust nozzle. Turbulence closure is achieved using a low-Reynolds-number two-equation model. The governing equations are solved numerically by means of a finite-volume, preconditioned flux-differencing scheme over a wide range of Mach umber. Various important physical processes are investigated systemically, including terminal shock train.

  • PDF

면내 곡률이 천음속 및 초음속 유체/구조 연계 진동 안정성에 미치는 영향 (Planform Curvature Effects on the Stability of Coupled Flow/Structure Vibration)

  • 김종윤;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.864-872
    • /
    • 2002
  • In this study, the effect of planform curvature on the stability of coupled flow/structure vibration is examined in transonic and supersonic flow regions. The aeroelastic analysis for the frequency and time domain is performed to obtain the flutter solution. The doublet lattice method(DLM) in subsonic flow is used to calculate unsteady aerodynamics in the frequency domain. For all speed range, the time domain nonlinear unsteady transonic small disturbance code has been incorporated into the coupled-time integration aeroelastic analysis (CTIA). Two curved wings with experimental data have been considered in this paper MSC/NASTRAN is used for natural free vibration analyses of wing models. Predicted flutter dynamic pressures and frequencies are compared with experimental data in subsonic and transonic flow regions.

불확정성을 고려한 항공기 구조물의 유체-구조간 상호 간섭 현상의 수치 해석 (Numerical Analysis for Fluid-Structure Interaction in Aircraft Structure Considering Uncertainty)

  • 정찬훈;신상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.251-257
    • /
    • 2007
  • For the modern aircraft, uncertainty has bee an important issue to its aeroelastic stability. Therefore, many researches have been conducted regarding this topic. The uncertainties in the aeroelastic system amy consist of the structural and aerodynamic uncertainty. In this paper, we suggest a parametric uncertainty modeling and conduct the aeroelastic stability analysis of a typical wing including the uncertainty.

  • PDF

중형항공기 동적 실속 특성 해석 (DYNAMIC STALL ANALYSYS OF A MID-SIZED AIRCRAFT)

  • 이융교;김철완;안석민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.37-39
    • /
    • 2010
  • Aerodynamic analysis was done for a fuselage and wing configuration of a mid-sized aircraft using 3-dimensional Navier-Stokes solver. Various turbulent models including a transitional SST were implemented to observe a dynamic stall as well as cruise characteristics. Also, different mesh moving methods were evaluated. Flow hysteresis which causes dynamic stall was investigated through flow field investigations.

  • PDF

The effect of sweep angle on the limit cycle oscillations of aircraft wings

  • Eken, Seher;Kaya, Metin Orhan
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.199-215
    • /
    • 2015
  • This study focuses on the limit cycle oscillations (LCOs) of cantilever swept-back wings containing a cubic nonlinearity in an incompressible flow. The governing aeroelastic equations of two degrees-of-freedom swept wings are derived through applying the strip theory and unsteady aerodynamics. In order to apply strip theory, mode shapes of the cantilever beam are used. The harmonic balance method is used to calculate the frequencies of LCOs. Linear flutter analysis is conducted for several values of sweep angles to obtain the flutter boundaries.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • 제4권2호
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

구조 비전형성 및 충격파 간섭효과를 고려한 미사일 날개의 천음속 유체유발 진동특성 (Characteristics of Transonic Flow-Induced Vibration for a Missile Wing Considering Structural Nonlinearity and Shock Inference Effects)

  • 김동현;이인;김승호;김태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.914-920
    • /
    • 2002
  • Nonlinear flow-induced vibration characteristics of a generic missile wing (or control surface) are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are considered in the transonic flow region. To practically consider the effects of freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on a finite element method (FEM). A computational fluid dynamics (CFD) technique is used for computing the nonlinear unsteady aerodynamics of all-movable wings. The aerodynamic analysis is based on the efficient transonic small-disturbance aerodynamic equations of motion using the potential-flow theory. To solve the nonlinear aeroelastic governing equations including the freeplay effect, a modal-based computational structural dynamic (CSD) analysis technique based on fictitious mass method (FMM) is used in time-domain. In addition, CSD and unsteady CFD techniques are simultaneously coupled to give accurate computational results. Various aeroelastic computations have been performed for a generic missile wing model. Linear and nonlinear aeroelastic computations have been conducted and the characteristics of flow-induced vibration are introduced.

  • PDF

비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측 (Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes)

  • 조규원;오우섭;권오준;이인
    • 한국항공우주학회지
    • /
    • 제30권8호
    • /
    • pp.37-45
    • /
    • 2002
  • 본 연구에서는 이차원에서 비정상 비점성 유동해석을 위한 비정렬 동적 편자 기법을 개발하였다. 유동해석 기법은 시간에 대해 2차의 정확도를 갖는 내재적인 시간적분법을 사용하였으며, 격자중심의 유한 체적법과 Roe의 풍상차분법을 이용하여 공간에 대한 차분화를 하였다. 시간과 공간에 대한 정확도를 증가시키기 위해서는 해에 따라 원하는 위치에 격자점들을 임의로 추가할 수 있는 비정상 동적 적응격자 기법을 사용하였다. 이를 이용하여 이차원의 2자유도를 갖는 스프링 에어포일 시스템의 와류와의 간섭현상에 따른 공탄성적 변위를 예측하였다.