• Title/Summary/Keyword: Unsteady Pressure Fluctuation

Search Result 71, Processing Time 0.024 seconds

A Numerical Analysis on the Flow Characteristics of Polar Cavity (폴라캐비티(Polar Cavity)의 유동특성에 관한 수치해석)

  • 김진구;조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.127-133
    • /
    • 2000
  • A numerical study of the flow of incompressible fluid in a polar cavity is presented. Irregular grids is proposed by applying the interior division principle to the variables on polar coordinate grid formation. Stability analysis and the pressure correction method of SOLA algorithms were discussed in detail on cylindrical coordinates. The results present that unsteady flow behavior appears over $Re=3{\times}10^4$ on polar cavities but nearly steady state at $Re=10^4$. Furthermore, with increasing Reynolds numbers, vortices behaviors indicate more complicated flow phenomena and more severe temporal fluctuation of total kinetic energy and time variation of velocity components at arbitrary pick-up points are detected in case of $Re=5{\times}10^4$.

  • PDF

Flow Characteristics of centrifugal Impeller Exit Under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.129-134
    • /
    • 1998
  • This study presents the measured unsteady fluctuation of impeller discharge flow for a centrifugal compressor in unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that on the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

A Numerical Study of Supersonic Combustion of Gas Generator (Gas generator의 초음속 연소현상에 대한 연구)

  • Kim, Seong-Jin;Seo, Bong-Gyun;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.419-422
    • /
    • 2010
  • An unsteady numerical combustion analysis was performed to investigate the combustion characteristics of A Dual Combustion Ramjet(DCR) engine using a gas generator. According to a variance of the equivalence ratio of the gas generator, the flow pattern in the combustor was analyzed. A typical acoustic frequency in the combustor was observed by detail analysis of pressure fluctuation at each location of the combustor.

  • PDF

Unsteady 2-D flow field characteristics for perforated plates with a splitter

  • Yaragal, Subhash C.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.317-332
    • /
    • 2004
  • Wind tunnel experiments were conducted under highly turbulent and disturbed flow conditions over a solid/perforated plate with a long splitter plate in its plane of symmetry. The effect of varied level of perforation of the normal plate on fluctuating velocities and fluctuating pressures measured across and along the separation bubble was studied. The different perforation levels of the normal plate; that is 0%, 10%, 20%, 30%, 40% and 50% are studied. The Reynolds number based on step height was varied from $4{\times}10^3$ to $1.2{\times}10^4$. The shape and size of the bubble vary with different perforation level of the normal plate that is to say the bubble is reduced both in height and length up to 30% perforation level. For higher perforation of the normal plate, bubble is completely swept out. The peak turbulence value occurs around 0.7 to 0.8 times the reattachment length. The turbulence intensity values are highest for the case of solid normal plate (bleed air is absent) and are lowest for the case of 50% perforation of the normal plate (bleed air is maximum in the present study). From the analysis of data it is observed that $\sqrt{\overline{u^{{\prime}2}}}/(\sqrt{\overline{u^{{\prime}2}}})_{max}$, (the ratio of RMS velocity fluctuation to maximum RMS velocity fluctuation), is uniquely related with dimensionless distance y/Y', (the ratio of distance normal to splitter plate to the distance where RMS velocity fluctuation is half its maximum value) for all the perforated normal plates. It is interesting to note that for 50% perforation of the normal plate, the RMS pressure fluctuation in the flow field gets reduced to around 60% as compared to that for solid normal plate. Analysis of the results show that the ratio [$C^{\prime}_p$ max/$-C_{pb}(1-{\eta})$], where $C^{\prime}_p$ max is the maximum coefficient of fluctuating pressure, $C_{pb}$ is the coefficient of base pressure and ${\eta}$ is the perforation level (ratio of open to total area), for surface RMS pressure fluctuation levels seems to be constant and has value of about 0.22. Similar analysis show that the ratio $[C^{\prime}_p$ max/$-C_{pb}(1-{\eta})]$ for flow field RMS pressure fluctuation levels seems to be constant and has a value of about 0.32.

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

Computational Fluid Dynamics of Cavitating Flow in Mixed Flow Pump with Closed Type Impeller

  • Kobayashi, Katsutoshi;Chiba, Yoshimasa
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • LES(Large Eddy Simulation) with a cavitation model was performed to calculate an unsteady flow for a mixed flow pump with a closed type impeller. First, the comparison between the numerical and experimental results was done to evaluate a computational accuracy. Second, the torque acting on the blade was calculated by simulation to investigate how the cavitation caused the fluctuation of torque. The absolute pressure around the leading edge on the suction side of blade surface had positive impulsive peaks in both the numerical and experimental results. The simulation showed that those peaks were caused by the cavitaion which contracted and vanished around the leading edge. The absolute pressure was predicted by simulation with -10% error. The absolute pressure around the trailing edge on the suction side of blade surface had no impulsive peaks in both the numerical and experimental results, because the absolute pressure was 100 times higher than the saturated vapor pressure. The simulation results showed that the cavitation was generated around the throat, then contracted and finally vanished. The simulated pump had five throats and cavitation behaviors such as contraction and vanishing around five throats were different from each other. For instance, the cavitations around those five throats were not vanished at the same time. When the cavitation was contracted and finally vanished, the absolute pressure on the blade surface was increased. When the cavitation was contracted around the throat located on the pressure side of blade surface, the pressure became high on the pressure side of blade surface. It caused the 1.4 times higher impulsive peak in the torque than the averaged value. On the other hand, when the cavitation was contracted around the throat located on the suction side of blade surface, the pressure became high on the suction side of blade surface. It caused the 0.4 times lower impulsive peak in the torque than the averaged value. The cavitation around the throat caused the large fluctuation in torque acting on the blade.

The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder (원형실린더 와류발생 소음에 대한 경사각 효과)

  • 홍훈빈;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF

Study on Flow Instability and Countermeasure in a Draft tube with Swirling flow

  • Nakashima, Takahiro;Matsuzaka, Ryo;Miyagawa, Kazuyoshi;Yonezawa, Koichi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.230-239
    • /
    • 2015
  • The swirling flow in the draft tube of a Francis turbine can cause the flow instability and the cavitation surge and has a larger influence on hydraulic power operating system. In this paper, the cavitating flow with swirling flow in the diffuser was studied by the draft tube component experiment, the model Francis turbine experiment and the numerical simulation. In the component experiment, several types of fluctuations were observed, including the cavitation surge and the vortex rope behaviour by the swirling flow. While the cavitation surge and the vortex rope behaviour were suppressed by the aeration into the diffuser, the loss coefficient in the diffuser increased by the aeration. In the model turbine test the aeration decreased the efficiency of the model turbine by several percent. In the numerical simulation, the cavitating flow was studied using Scale-Adaptive Simulation (SAS) with particular emphasis on understanding the unsteady characteristics of the vortex rope structure. The generation and evolution of the vortex rope structures have been investigated throughout the diffuser using the iso-surface of vapor volume fraction. The pressure fluctuation in the diffuser by numerical simulation confirmed the cavitation surge observed in the experiment. Finally, this pressure fluctuation of the cavitation surge was examined and interpreted by CFD.

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.

Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis (파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구)

  • Ku, Garam;Lee, Songjune;Kim, Kuksu;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.314-320
    • /
    • 2017
  • A pressure relief valve is generally used to prevent piping systems from being broken due to high pressure gas flows. However, the sudden pressure drop caused by the pressure relief valve produces high acoustic energy which propagates in the form of compressible acoustic waves in the pipe and sometimes causes severe vibration of the pipe structure, thereby resulting in its failure. In this study, internal aerodynamic noise due to valve flow is estimated for a simple contraction-expansion pipe by combining the LES (Large-Eddy Simulation) technique with the wavenumber-frequency analysis, which allows the decomposition of fluctuating pressure into incompressible hydrodynamic pressure and compressible acoustic pressure. In order to increase the convergence, the steady Reynolds-Averaged Navier-Stokes equations are numerically solved. And then, for the unsteady flow analysis with high accuracy, the unsteady LES is performed with the steady result as the initial value. The wavenumber-frequency analysis is finally performed using the unsteady flow simulation results. The wavenumber-frequency analysis is shown to separate the compressible pressure fluctuation in the flow field from the incompressible one. This result can provide the accurate information for the source causing so-called acoustic-induced-vibration of a piping system.