• Title/Summary/Keyword: Unsteady Flow-Field

Search Result 410, Processing Time 0.022 seconds

A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas (소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구)

  • 김민호;정우인;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

Feasibility Analysis of HEC-RAS for Unsteady Flow Simulation in the Stream Channel with a Side-Weir Detention Basin (강변저류지가 있는 하도에서의 부정류 흐름 모의를 위한 HEC-RAS의 적용성 검토)

  • Kim, Seo-Jun;Hong, Sang-Jin;Yoon, Byung-Man;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.495-503
    • /
    • 2012
  • It is necessary to perform the precise analysis of unsteady flow for effective design of the side-weir detention basin installed in the river. Generally, the HEC-RAS program, which is a 1D unsteady numerical model, is mostly used to simulate the unsteady flow for rivers. However, it is difficult to have confidence of unsteady flow results simulated by HEC-RAS due to the lack of experimental data and field monitoring data for the channel with a side-weir detention basin. Therefore, the purpose of this study is to validate or verify the simulation results calculated by HEC-RAS through the experiments for the open channel with a side-weir detention basin using specially-designed unsteady discharge-supply system. The experimental cases included unsteady flows in the straight channel with and without a side-weir detention basin. Especially, for the case with a detention basin, the experiment was performed to consider only the free flow condition over the side-weir. The study results showed that values of water level and discharge obtained from HEC-RAS coincided reasonably with experimental results with the maximum error of 3% for water level and 1% for discharge in the case of the flow without the side-weir detention basin and 4% for water level and 2% for discharge with the side-weir detention basin.

The Visualization of the Flow Field through Ship's Propulsion Mechanism of Weis-Fogh Type using the PIV

  • Ro, Ki-Deok;Kim, Kwang-Seok;Kim, Si-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1036-1043
    • /
    • 2008
  • The Flow fields of a ship's propulsion mechanism of Weis-Fogh type were investigated by the PIV. Velocity vectors and velocity profiles around the operating and stationary wings were observed at opening angles of ${\alpha}=15^{\circ} and $30^{\circ}$, velocity ratios of V/U=$0.5{\sim}1.5$ and Reynolds number of Re=$0.52{\times}10^4{\sim}1.0{\times}10^4$. As the results the fluid between wing and wall was inhaled in the opening stage and was jet in the closing stage. The wing in the translating stage accelerated the fluid in the channel. And the flow fields of this propulsion mechanism were unsteady and complex, but those were clarified by flow visualization using the PIV.

3-Dimensional Computations of the Weak Shock Wave Discharged from the Exit of Duct (관출구로부터 방출되는 약한 충격파에 관한 3 차원 수치해석)

  • Kweon, Yong-Hun;Shin, Hyun-Dong;Kim, Heuy-Dong;Lee, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1742-1747
    • /
    • 2003
  • When a shock wave is discharged from the exit of a duct, complicated flow is formed near the duct exit. The flow field is much more complicated under the ground effects or any other objects near the exit of a duct, such as the circumstance near the exit of the high-speed railway tunnel. The resulting flow is essentially three-dimensional unsteady with the effects of strong compressibility. In the current study, three-dimensional flow fields of the weak shock wave which is discharged from the exit of a duct are numerically investigated using a CFD method. Computations are performed for the weak shock wave in the range below 1.5. The results obtained show that the directivity and magnitude of the weak shock discharged strongly depend upon the Mach number of initial shock wave and are significantly influenced by the ground effects.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN (축류팬의 비정상 유동장 및 유동소음의 수치 해석)

  • Kim, Wook;Hur, Nahm-Keon;Jeon, Wan-Ho
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

Numerical Simulation of Unsteady Flow Field behind Widely-Spaced Co-axial Jet using Random Vortex Method (RVM을 사용한 큰지름비 동축젯트의 비정상 수치해석)

  • 류명석;강성모;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.130-138
    • /
    • 1996
  • The transient incompressible flow behind the widely-spaced co-axial jet is numerically simulated using the random vortex method(RVM). This numerical approach is based on the Lagrangian approach for the vorticity formulation of the unsteady Navier-Stokes equations, utilizing vortex elements to account for the convection and diffusion processes. The effects of the mass flow rate of an annular air jet and a central fuel jet on the co-axial jet flow dynamics is investigated. To validate the present procedure, the numerical results are compared with the available experimental data the present procedure, the numerical results are compared with the available experimental data in terms of the centerline and off-centerline profiles of the mean axial velocity. Discrepancies between the RVM results and the measurements are discussed in detail.

  • PDF

Numerical Study of 3D Unsteady Flow in a Blood Sac of TPLS: Effect of Actuator Speed (TPLS 혈액주머니 내의 3차원 비정상유동에 대한 수치해석 연구: 액추에이터 속도의 영향)

  • Jung G. S.;Seong H. C.;Park M. S.;Ko H. J.;Shim E. B.;Min B. G.;Park C. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.206-211
    • /
    • 2003
  • This paper reports the numerical results for blood flow of the sac squeezed by moving actuator in the TPLS(Twin Pulse Life Support System). Blood flow in the sac is assumed to be 3-dimensional unsteady newtonian fluid. where the blood flow interacts with the sac, which is activated by the moving actuator. The flow field is simulated numerically by using the FEM code, ADINA. It is well known that hemolysis is closely related to shear stress acted on blood flow. According to this fact, we simulate four models with different speed for moving actuator and examine the distribution of shear stress for each model. Numerical results show that maximum shear stress is strongly dependent on the actuator speed.

  • PDF

Water carrying iron (iii) oxide (Fe3O4) ferrofluid flow and heat transfer due to deceleration of a rotating plate

  • Bhandari, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.679-690
    • /
    • 2022
  • This research effort examines the flow behavior and heat transfer assessment of water carrying iron (iii) oxide magnetic fluid due to a rotating and moving plane lamina under the influence of magnetic dipole. The effect of rotational viscosity and magnetic body force is taken into consideration in the present study. The involvement of the moving disk makes a significant contribution to the velocity distribution and heat transfer in rotational flow. Vertical movement of the disk keeps the flow unsteady and the similarity transformation converts the governing equation of unsteady flow into nonlinear coupled differential equations. The non-dimensional equation in the present system is solved through the finite element procedure. Optimizing the use of physical parameters described in this flow, such results can be useful in the rotating machinery industries for heat transfer enhancement.

A Numerical Study of the Effects of Design Parameter upon Fan Performance and Noise (원심홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구)

  • Jeon, Wan-Ho;Lee, Duck-Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.45-51
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise due to the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan and to calculate the effects of rotating velocity, flow rate, cut-off distance and the number of blades and its effects on the noise of the fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated with the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The cut-off distance is the most important factor effecting the noise generation. Acoustic pressure is proportional to 2.8, which shows the same scaling index as the experimental result. In this paper, the cut-off distance is found to be the dominant parameter offecting the acoustic pressure.

  • PDF

PARALLEL CFD SIMULATIONS OF PROJECTILE FLOW FIELDS WITH MICROJETS

  • Sahu Jubaraj;Heavey Karen R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.94-99
    • /
    • 2006
  • As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.

  • PDF